Terminology

We will be studying collections of objects. In this context, an **object** is a record with a **key** field and **satellite data** fields. Every object is identified by a **pointer**; when we say that a function takes an object as an argument or returns one as a result, it is manipulating a pointer to the object. In most data structures, some of the satellite data fields are pointers to other objects in the data structure. The null pointer, or **nil**, is a distinguished pointer that stands for the absence of an object; it is used to represent empty lists or trees. We use the term **leaf** to refer to an empty tree and **fringe node** to refer to a tree node whose children are all leaves.

On the next page are pictures showing objects in the context of some of the data structures we will be studying. Each data structure is assumed to be represented by an **entry point record** with fields that refer to objects as well as auxiliary information. For example, an array has an **elements** field and a **length** field; linked and doubly-linked lists have a **head** field that points to the first object in the list; and trees have a **root** field that points to the root of the tree.
Array

pointer = (array, index)

Linked List

Doubly Linked List

Binary Tree
Dynamic Sets

A dynamic set is an abstract data type for a mutable collection of objects that supports the following seven operations below. Assume that object keys are distinct and are related by a total order: i.e., any two keys are related by one of \(<\), \(=\), or \(>\). The distinctness restriction is not essential but simplifies the definitions (e.g., without distinctness, we can't refer to the maximal object or the object with the next largest key).

Search(set, key)
Returns a pointer to an object in set with the specified key, or nil if there is no such object in set.

Insert(set, obj)
Destructively update set to add the object obj. Insertion may change the fields of obj that relate it to other objects in the collection.

Delete(set, obj)
Destructively update set to remove the object obj.

Minimum(set)
Return the object in set with the smallest key.

Maximum(set)
Return the object in set with the largest key.

Successor(set, obj)
Return the object in set whose key directly follows that of obj in the total order of keys in set. Returns nil if obj is the element with the maximal key.

Predecessor(set, obj)
Return the object in set whose key directly precedes that of obj in the total order of keys in set. Returns nil if obj is the element with the minimal key.
Asymptotic Worst-Case Running Times for Simple Implementations of Dynamic Sets

In the following table, use \(n \) to refer to the number of elements in the set and \(h \) to refer to the height of the tree-based representations.

<table>
<thead>
<tr>
<th></th>
<th>Search</th>
<th>Insert</th>
<th>Delete</th>
<th>Maximum</th>
<th>Minimum</th>
<th>Successor</th>
<th>Predecessor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsorted Array</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sorted Array</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unsorted Linked List</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sorted Linked List</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unsorted Doubly-Linked List</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sorted Doubly-Linked List</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Binary Tree</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Binary Search Tree</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Binary Search Trees

A binary search tree (BST) is a binary tree satisfying the **binary search tree property**:

- If `left-obj` is in the left subtree of `obj`, `key[left-obj] ≤ key[obj]`
- If `right-obj` is in the right subtree of `obj`, `key[right-obj] ≥ key[obj]`

There are many binary search trees corresponding to a given set of elements. E.g., what are the binary search trees for \{A, B, C\}?

The objects in a binary search tree can be enumerated in sorted order by inorder traversal of the tree starting at its root:

\[
\text{Inorder- Traverse}(\text{node, function}) \\
\quad \text{if node} \neq \text{nil then} \\
\quad \quad \text{Inorder- Traverse}(\text{left[node]}, \text{function}) \\
\quad \quad \text{function(node)} \\
\quad \quad \text{Inorder- Traverse}(\text{right[node]}, \text{function})
\]

This gives rise to the **Tree-Sort** sorting algorithm:

Step 1: Insert all objects into a binary search tree.
Step 2: Enumerate the elements of the binary search tree via an in-order traversal.
BST Operations I

{This algorithm is recursive, but it's easy to make it iterative.}

BST-Search(node, key)
 if (node = nil) or (key = key[node])
 then return node
 if key < key[node]
 then return BST-Search(left[node], key)
 else return BST-Search(right[node], key)

BST-Minimum(node)
 while left[node] ≠ nil
 do node <- left[node]
 return node

{BST-Maximum is symmetric with BST-Minimum}

{The successor is}
 (1) The minimum of the right subtree (if it exists)
 (2) The first leftward parent (if it exists)

BST-Successor(node)
 if right[node] ≠ nil
 then return BST-Minimum(right[node])
 parent-node <- parent[node]
 child-node <- node
 while (parent-node ≠ nil) and (child-node = right[parent-node])
 do child-node <- parent-node
 parent-node <- parent[parent-node]
 (At this point, either
 (1) parent-node is nil
 (2) child-node = left[parent-node])
 return parent-node

{BST-Predecessor is symmetric with BST-Successor}
BST-Insert(tree, node)
 previous <- nil
 current <- root[tree]
 while current ≠ nil
 do previous <- current
 if key[node] < key[current]
 then current <- left[current]
 else current <- right[current]
 parent[node] <- previous
 if previous = nil
 then root(tree) <- node
 else if key[node] < key[previous]
 then left[previous] <- node
 else right[previous] <- node

{Different from CLR version. Assumes there is a dummy header node at root.}
BST-Delete(tree, node)
 if (left[node] = nil) or (right[node] = nil)
 then if node = left[parent[node]]
 then left[parent[node]] <- Other-Child(node)
 else right[parent[node]] <- Other-Child(node)
 else succ <- BST-Successor(tree, node)
 BST-delete(tree, succ) {Delete succ from current position}
 (Splice succ into position of node)
 parent[left[node]] <- succ
 left[succ] <- left[node]
 parent[right[node]] <- succ
 right[succ] <- right[node]
 parent[succ] <- parent[node]
 if node = left[parent[node]]
 then left[parent[node]] <- succ
 else right[parent[node]] <- succ

{If one child is nil, return the other one.}
{Will return nil if both children are nil.}
Other-Child(node)
 if left[node] = nil
 then return right[node]
 else return left[node]
Notes

All seven BST operations have $\Theta(h)$ worst-case running times, where h is the height of the tree. What is the relationship between the height h and the number of elements n?

Best case:

Worst case:

Average case:

For the average case, assume that trees are formed by sequentially inserting the elements of a randomly permuted array of n objects into an initially empty BST. Note that there is a close correspondence between the resulting tree and the partitionings of quick sort.