PROBLEM SET 6
Due: Friday, November 8

Important: On Friday, November 8, you will receive a take-home exam. In order to give you maximal time to work on your exam, I require Problem Set 6 to be turned in no later than 6pm on Friday, November 8. At that time, solutions to Problem Set 6 will be made available.

Reading: CLR Chapter 16 (Dynamic Programming); CLR Chapter 17, Sections 17.1--17.3 (Greedy Algorithms)

Suggested Problems: 16.1-1; 16.3-1; 16.3-6; 16-2; 16-3; 16-4; 17.2-2, 17.2-3, 17.2-4, 17.2-5, 17.2-6; 17.3-1, 17.3-8; 17-1

Problem 1 [25] Consider the following recursive definition of the Fibonacci function:

```pseudocode
Fib(n)
    if n < 2 then
        return n
    else
        return Fib(n-1) + Fib(n-2)
```

a [5] Draw a function call tree for Fib(6) and determine the number of times that Fib(2) is called. (In this case, a function call tree is a binary tree in which each node is labelled by Fib(i) and has left and right subtrees that are function call trees for Fib(i-1) and Fib(i-2), respectively.)

b [10] The above recursive definition of Fib has a running time that is exponential in n. Using memoization (with an auxiliary array), develop a O(n) recursive definition FibMemo of the Fibonacci function. Express your solution in pseudocode.

c [10] Transform the top-down recursive strategy from part b into a bottom-up iterative strategy expressed in terms of a loop rather than a recursion. Express your solution in pseudocode.

Problem 2 [10] CLR 16.3-1 (p. 319)

Problem 3 [25] Solve CLR 16.3-5 (p. 319) using the two strategies described below. Assume that the input is stored in an array A[1..n]. For each strategy:
• describe your algorithm (in English is fine)
• briefly argue why is is correct
• briefly argue why it takes O(n^2) time.

a[10] Develop a solution that uses the Θ(mn) LCS algorithm as a black box as part of the solution. Note: you can express a solution of this form in just a few lines!

b[15] Develop a solution that does not use the LCS algorithm as a black box, but instead uses an auxiliary array M[1..n], where each M[i] stores the longest monotonically increasing sequence in A[i..n] that begins with A[i].
Problem 4[25] CLR 16-2 (p. 325)

Problem 5[15] CLR 17.2-4 (p. 337)

Extra Credit Problem [20] CLR 16.3-6 (p. 319)
Problem Set Header Page
Please make this the first page of your hardcopy submission.

CS231 Problem Set 6
Due Friday, November 8, 1996

Name:

Date & Time Submitted (only if late):

Collaborators (anyone you collaborated with in the process of doing the problem set):

In the Time column, please estimate the time you spent on the parts of this problem set. Please try to be as accurate as possible; this information will help me to design future problem sets. I will fill out the Score column when grading your problem set.

<table>
<thead>
<tr>
<th>Part</th>
<th>Time</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Reading</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Problem 1 [25]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Problem 2 10]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Problem 3 [25]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Problem 4 [15]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Problem 5 [25]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extra Credit [20]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>