RECURRENCES AND SUMMATIONS (Revised)

This is a revised version of Handout 7 that summarizes highlights of CLR Chapters 3 & 4. You should replace the previous Handout 7 with this version.

Two-Step Strategy for Analyzing Algorithms

1. Characterize running-time (space, etc.) of algorithm by a recurrence equation.

2. Solve the recurrence equation, expressing answer in asymptotic notation.

Recurrence Equations

A recurrence equation is just a recursive function definition. It defines a function at one input in terms of its value on smaller inputs.

We use recurrence equations to characterize the running time of algorithms. T(n) typically stands for the running-time (usually worst-case) of a given algorithm on an input of size n.

Recurrence equations for divide-and-conquer algorithms typically have the form:

General Case \((n > 1)\)

\[T(n) = \text{[# of subproblems]} T(\text{[size of each subproblem]}) + \text{[cost of divide&combine]} \]

Base Case \((n = 1)\)

\[T(1) = \Theta(1) \]

Because the base case is always the same, it is usually omitted when defining T(n).

Deriving Recurrence Equations

Insert an element into a sorted list of length n	T(n) = _____T(__________) + _______
Insertion-sort a list of length n.	T(n) = _____T(__________) + _______
Binary search on an array of n elements.	T(n) = _____T(__________) + _______
Find the maximum of the leaves of a balanced binary tree with n leaves.	T(n) = _____T(__________) + _______
Merge-sort a list of n elements	T(n) = _____T(__________) + _______
Find the maximum element of array \(A[0..n-1] \) by iteratively setting \(A[i] \) to \(\max(A[2i], A[2i+1]) \)

\[
T(n) = T\left(\frac{n}{2} \right) + \:
\]

Solving Recurrence Equations: The Iteration Method

The **iteration method** is a two-step strategy for solving recurrence equations:

1. Iteratively construct a recursion tree by unwinding the recurrence equation.
2. Determine the cost of the entire tree by summing the costs of the nodes.

There are other methods for solving recurrence equations; see CLR for details. However, we will use the iteration method almost exclusively.

Example 1: \(T(n) = T(n - 1) + 1 \)

Also derivable:
\[
T(n - 1) = T(n - 2) + 1 \\
T(n - 2) = T(n - 3) + 1
\]
e tc.

Total cost of nodes = number of nodes = \(n \)
Example 2: \(T(n) = T(n - 1) + n \)

Also derivable:
\[
T(n - 1) = T(n - 2) + (n - 1) \\
T(n - 2) = T(n - 3) + (n - 2) \\
\text{etc.}
\]

Total cost of nodes = \(1 + 2 + 3 + \ldots + (n - 2) + (n - 1) + n \) \{Arithmetic series; see below\}

\[
= \sum_{k=1}^{n} k = \frac{n(n+1)}{2}
\]

Example 3: \(T(n) = T(n/2) + 1 \)

Also derivable:
\[
T(n/2) = T(n/4) + 1 \\
T(n/4) = T(n/8) + 1 \\
\text{etc.}
\]

Total cost of nodes = number of nodes = \(\log(n) + 1 = \Theta(\log(n)) \)
(We start with one T(n) node and generate a number of subnodes equal to the number of times n can be successively divided by 2. The latter quantity is \(\lg(n) \); including the 1 generated by the original T(n) node gives \(\lg(n) + 1 \) nodes.)
Example 4: $T(n) = 2T(n/2) + 1$

Also derivable: $T(n/2) = 2T(n/4) + 1$
$T(n/4) = 2T(n/8) + 1$
etc.

Total cost = number of nodes
= sum of nodes at each level
= $1 + 2 + 4 + 8 + \ldots + 2^{\lg(n)}$ \{Geometric series!\}

$$= \sum_{k=0}^{\lg(n)} 2^k = 2^{\lg(n) + 1} - 1 = 2n - 1$$

Example 5: $T(n) = 2T(n/2) + n$

Also derivable: $T(n/2) = 2T(n/4) + n/2$
$T(n/4) = 2T(n/8) + n/4$

Total cost = number of nodes
= sum of nodes at each level
= $n + n/2 + n/4 + \ldots + n/2^{\lg(n)}$ \{Geometric series!\}

$$= \sum_{k=0}^{\lg(n)} n \cdot 2^{-k} = \frac{n}{2^{\lg(n) + 1}} = \frac{n}{2n} = \frac{1}{2}$$
Total cost = (n)(number of levels) = n(lg(n) + 1) = \Theta(n \cdot lg(n))
Example 6: $T(n) = T(n/2) + n$

Also derivable:
$T(n/2) = T(n/4) + n/2$
$T(n/4) = T(n/8) + n/4$

Total cost = $n + n/2 + n/4 + \ldots + n/2^{\lg(n)} = \sum_{k=0}^{\lg(n)} \frac{n}{2^k} < \sum_{k=0}^{\infty} \frac{n}{2^k} = \frac{n}{1 - \frac{1}{2}} = 2n$.

Summations

Sigma notation:

\[\sum_{j=1}^{n} a_j = a_1 + a_2 + ... + a_n = \sum_{k=1}^{n} a_k \]

Linearity Laws:

\[\sum_{k=1}^{n} c \cdot a_k = c \cdot \sum_{k=1}^{n} a_k \]

\[\sum_{k=1}^{n} (a_k + b_k) = \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k \]

Arithmetic Series

A series is arithmetic if \(a_k = c + a_{(k-1)} \)

Trick: Sum corresponding pairs of numbers:

\[\sum_{k=1}^{n} a_k = \frac{n}{2}(a_1 + a_n) \]

Examples:

- \(1 + 2 + 3 + ... + n = \)

- Sum of first \(n \) elements of series \(7 + 10 + 13 + 16 + ... \)
Geometric Series

A series is geometric if \(a_k = c \cdot a_{(k-1)} \)

Let \(S(n) \) stand for \(\sum_{k=0}^{n} a_1 \cdot c^k = a_0 + a_0 c + a_0 c^2 + a_0 c^3 + ... + a_0 c^n \)

(Note carefully: \(S(n) \) has \(n+1 \) terms, not \(n \) terms!)

Notice the following:

\[
\begin{align*}
cS(n) &= a_0 c + a_0 c^2 + a_0 c^3 + ... + a_0 c^{n+1} \\
-S(n) &= a_0 + a_0 c + a_0 c^2 + a_0 c^3 + ... + a_0 c^n
\end{align*}
\]

\[
(c - 1) S(n) = a_0 c^{n+1} - a_0 = a_0(c^{n+1} - 1)
\]

\[
S(n) = \frac{a_0(c^{n+1} - 1)}{(c - 1)}
\]

If \(0 < c < 1 \) and \(n \to \infty \), the above formula can be rewritten as:

\[
\lim_{n \to \infty} S(n) = \frac{a_0}{1 - c} \quad \text{if} \quad 0 < c < 1
\]

Examples:

\[
1 + 2 + 4 + 8 + ... + 2^n =
\]

\[
1 + 2 + 4 + 8 + ... + 2^{\lg(n)} =
\]

\[
1/2 + 1/4 + 1/8 + ... =
\]

\[
1/3 + 1/9 + 1/27 + ...
\]