Depth-First Search and Related Algorithms

Reading: Sections 23.3 -- 23.5

--

Depth-First Search

Idea: Explore graph from a given vertex by first exploring all children of that vertex. To avoid looping through cycles, mark each vertex upon first visiting it; do not explore children of a previously visited vertex.

{Induce a depth-first forest on a graph.}

\[
\text{DFS(G)} \\
\text{for } v \in \text{vertices[G]} \text{ do} \\
\text{color}[v] \leftarrow \text{unexplored} \quad \{\text{CLR calls this "white"}\} \\
\text{parent}[v] \leftarrow \text{nil} \\
\text{for } v \in \text{vertices [G]} \text{ do} \\
\text{if } \text{color}[v] = \text{unexplored} \text{ then} \\
\text{DFS-Visit}(v)
\]

{Induce a depth-first tree on a graph starting at v}

\[
\text{DFS-Visit}(v) \\
\text{color}[v] \leftarrow \text{frontier} \quad \{\text{CLR calls this "gray"}\} \\
\text{for } a \in \text{Adj}[v] \text{ do} \\
\text{if } \text{color}[a] = \text{unexplored} \text{ then} \\
\text{parent}[a] = v \\
\text{DFS-Visit}(a) \\
\text{color}[v] \leftarrow \text{processed} \quad \{\text{CLR calls this "black"}\}
\]

Note: DFS effectively uses a stack to process frontier vertices, in contrast with the queue used by BFS.

Analysis:

- DFS-Visit called exactly once on each vertex: $\Theta(V)$.
- Each directed edge explore exactly once in for loop within DFS-Visit: $\Theta(E)$.
- Total: $\Theta(V + E)$
Edge Classification

- *Tree edges* are edges (parent[v], v) forming depth-first forest.
- *Back edges* connect vertex to an ancestor in a depth-first tree.
- *Forward edges* are non-tree edges connecting vertex to a descendent in a depth-first tree.
- *Cross edges* are non-tree edges connecting (1) two vertices in a tree that are not in an ancestor/descendant relationship or (2) two vertices from different trees.

A tree is acyclic if there are no back edges.

Can mark edges by type during DFS by noting color of vertex when first encountered:

- *unexplored* indicates a tree edge
- *frontier* indicates a back edge
- *processed* indicates a forward or cross edge (can use timestamps -- see below -- to distinguish)

Note: Breadth-first search (BFS) can also be used to classify edges into category (CLR 23-1). In BFS there are no forward edges -- why?
Timestamps

Can extend the simple DFS above to timestamp each discovery and finish step using a global clock. (Changes to the previous algorithm are in \textit{bold italic}.)

\begin{verbatim}
{Induce a depth-first forest on a graph.}
DFS(G)
 for v in vertices[G] do
 color[v] ← unexplored
 parent[v] ← nil
 time ← 0 \textit{(Assume time is a global variable)}
 for v in vertices [G] do
 if color[v] = unexplored then
 DFS-Visit(v)

 {Induce a depth-first tree on a graph starting at v}
DFS-Visit(v)
 color[v] ← frontier
 time ← time + 1
 discovery[v] ← time
 for a in Adj[v] do
 if color[a] = unexplored then
 pred[a] = v
 DFS-Visit(a)
 color[v] ← processed
 time ← time + 1
 finish[v] ← time
\end{verbatim}

\textit{Note:} Timestamps range between 1 and 2|V|

Parenthesis Theorem

For two vertices \(a\) and \(b\) in a depth-first forest of \(G\), exactly one of the following three holds:

- The intervals \((\text{discovery}[a], \text{finish}[a])\) and \((\text{discovery}[b], \text{finish}[b])\) are disjoint. (True when \(a\) and \(b\) do not have an ancestor or descendant relationship.)

- The interval \((\text{discovery}[a], \text{finish}[a])\) is nested within \((\text{discovery}[b], \text{finish}[b])\) (True when \(a\) is a descendant of \(b\) in depth-first forest.)

- The interval \((\text{discovery}[b], \text{finish}[b])\) is nested within \((\text{discovery}[a], \text{finish}[a])\) (True when \(b\) is a descendant of \(a\) in depth-first forest.)

Unexplored-path Theorem (\textit{CLR’s White-path Theorem})

In a depth-first forest of \(G\), vertex \(d\) is a descendant of ancestor \(a\) iff at time \(\text{discovery}[a]\), \(d\) can be reached from \(a\) along a path consisting entirely of unexplored vertices.
Topological Sort

A directed acyclic graph (DAG) is a directed graph without cycles. A topological sort of a DAG $G = (V, E)$ is a linear ordering of vertices in V consistent with the partial order $a < b$ if $(a, b) \in E$. In other words, each vertex in a topological sort must precede all its descendants in the DAG and must follow all of its ancestors.

Approach 1:

Modify DFS so that when it finishes processing a vertex, it prepends it to the front of an initially-empty global list. Since processing of a vertex is finished only when all descendants are finished, each vertex precedes all its descendants in the list. The running time is $\Theta(V + E)$ since DFS takes $\Theta(V + E)$ time.

Approach 2:

The in-degree of a vertex v in a directed graph is the number of edges whose target is v.

```
Topological-Sort-2 (G)
L <- Empty-List
while vertices[G] ≠ {} do
  v <- Find-Vertex-With-Indegree=0(G)
  L <- Postpend(v, L)
  for e in Out-Edges(G, v)
    G <- Remove-Edge(e, G)
return L
```

Each vertex clearly follows all its ancestors. The running time can be made $O(V + E)$ (left as an exercise: see CLR 23.4-5 on p. 488).
Connected and Strongly Connected Components

A **connected component** of a graph is a maximal set of vertices such that for any two vertices a and b in the set, there is a path from a to b or from b to a. In other words, two vertices are in the same connected component if there is a path from one to the other.

The connected components of a graph are computed by DFS: each tree in the depth-first forest is a connected component of the graph. Running time is running time of DFS = \(\Theta(V + E) \)

A **strongly connected component** of a graph is a maximal set of vertices such that for any two vertices a and b in the set, there is a path from a to b and from b to a. In other words, in a strongly connected component, there is a path from every member of the set to every other member of the set.

The **transpose** of a graph G, written \(G^T \), is a graph with the same vertices as G in which the directions of all edges have been reversed.

\[
\text{Strongly-Connected-Components}(G)
\begin{align*}
1. \text{ Call DFS(G) to compute finish[v] for each vertex in G} \\
2. \text{ Call Modified-DFS}(G^T), where the main loop of Modified-DFS processes vertices in order of decreasing finish[v].} \\
3. \text{ Each tree in depth-first forest of Modified-DFS}(G^T) is a strongly connected component of G}
\end{align*}
\]

Running time of **Strongly-Connected-Components** is the running time of two calls to DFS = \(\Theta(V + E) \).