Red-Black Trees

Definition

A red-black tree (RBT) is a binary search tree that satisfies the following red-black properties:

1. Every node has a color that is either red or black.
2. Every leaf is black.
3. If a node is red, both children are black.
4. Every path from a given node down to any descendant leaf contains the same number of black nodes. The number of black nodes on such a path (not including the initial node but including leaves) is called the black-height (bh) of the node.
5. The root of the tree is black (not a CLR property, but should be).

Example

![Red-Black Tree Diagram]

Balance Property of Red-Black Trees

Consider a subtree with n nodes (non-leaves) rooted at any node x within a red-black tree. Then the following relationships hold:

- \(\text{height}(x)/2 \leq \text{bh}(x) \leq \text{height}(x) \)
- \(2^{\text{bh}(x)} - 1 \leq n < 2^{\text{height}(x)} \)
- \(\log(n) < \text{height}(x) \leq 2\log(n + 1) \)

The last relationship is the sense in which a red-black tree is balanced.
Red-Black Tree Insertion

To insert value V into red-black tree T:

Step 1: Use usual BST insertion algorithm, coloring new node red. RBT properties (1), (2), and (4) do not change. RBT property (3) will not hold if there is a red-red violation.

Step 2: Remove any red-red violation via the following rotation rules.\(^1\) It may be necessary to apply the rules multiple times. What is the maximal number of times the rules can be applied in the worst case?

Step 3: If Step 1 or Step 2 leaves the root of the tree red, reassert RBT property (5) by blackening the root. Why is this necessary? (Hint: look at the rules in Step 2.)

\(^1\) These are simpler, but less efficient than, those in CLR. They are due to Chris Okasaki, *Purely Functional Data Structures*, Cambridge University Press, 1998.
Red-Black Tree Insertion Example

Insert the letters A L G O R I T H M in order into a red-black tree.
Red-Black Tree Insertion Example (continued)
More Efficient Red-Red Violation Elimination, Part 1

The rotation rules presented earlier for eliminating red-red violations are simple but can require a number of rotations proportional to the height of the tree. CLR present more complex but efficient rules. Here, we present their rules in a different style, using the notation \(\Delta \) to stand for a red-black tree named `a` rooted at a red node and \(\triangle \) to stand for a red-black tree named `b` rooted at a black node.

Case 1 of CLR’s `RB-Insert` handles the case where the sibling of the top red node `N` of red-red violation is red. In this case, the blackness of `N`’s parent can be distributed among `N` and its sibling, as illustrated by the following rules:

Note that no rotations are required, but the red-red violation may move up the tree.
More Efficient Red-Red Violation Elimination, Part 2

Case 2 and Case 3 of CLR’s Re-Insert handle the situation where the sibling of the top red node \(N \) of red-red violation is black. In this case, a single rotation\(^2\) eliminates the red-red violation, as illustrated by the following rules:

This more efficient approach of eliminating red-red violations needs at most \(\Theta(\lg(n)) \) rule applications and one rotation.

\(^2\)CLR presents the rules in such a way that two rotations may be required, but this can be optimized to one.
Red-Black Tree Deletion

To delete value V from red-black tree T:

Step 1: Use usual BST deletion algorithm, replacing a deleted node by its predecessor (or successor) in the case where neither child is a leaf. Let N be the node with a child leaf that is deleted. If N is black, property (4) (uniformity of black-height) is violated. Reassert it by making the “other” child of N doubly-black.

Step 2: Propagate double-blackness up the tree using the following rules. The blackness token ■ turns a black node doubly-black and turns a red node black. Using these rules, the black height invariant can be reasserted with $\Theta(\lg(n))$ rule applications and at most 2 rotations.

- A. The sibling of the doubly-black node is black and one nephew is red (CLR’s RB-Delete Cases 3 and 4). This rule eliminates the blackness token with one rotation.

- B. The sibling and both nephews of the doubly-black node are black (CLR’s RB-Delete Case 2). This rule propagates the blackness token upward without rotation.

- C. The sibling of the doubly-black node is red (CLR’s RB-Delete Case 1). This enables Case A or B.

Step 3: If the doubly black token propagates to root, remove it.

3Only the cases where the doubly-black node is a left child are shown; the cases where the doubly-black node is a right child are symmetric.
Red-Black Tree Deletion Example

Delete the letters A L G O R I T H M in order from the red black tree constructed before.
Red-Black Tree Deletion Example (continued)
Red-Black Tree Deletion Example (continued)
Augmenting Red-Black Trees

Can often improve running time of additional operations on a data structure by caching extra information in the header node or data nodes of a data structure. Must insure that this information can be updated efficiently for other operations.

Examples:

1. Store the length of a linked or doubly linked list in a header node.

2. Store a pointer to the maximum node in a sorted linked list. (Why wouldn’t it help for an unsorted linked list?)

3. Store the size of every red-black subtree in the root of that subtree.

\[
\begin{align*}
\text{size[leaf]} &= 0 \\
\text{size[node]} &= 1 + \text{size[left[node]]} + \text{size[right[node]]}
\end{align*}
\]

Can use size field to:

- Determine size of tree in \(\Theta(1)\) worst-case time.
- Perform Select(T, k) (i.e. find the \(k\)th order statistic) in \(\Theta(\log(n))\) worst-case time.
- Determine the rank of a given key \(x\) in \(\Theta(\log(n))\) worst-case time.

Insert and **Delete** can update the size field efficiently (i.e., without changing the asymptotic running time of **Insert** and **Delete**):

Insert: In downward phase searching for insertion point, increment sizes by one. In upward "fix-up" phase, update sizes at each rotation.

Delete: After deleting node \(y\), decrement sizes on path to root[T] by one. In upward "fix-up" phase, update sizes at each rotation.

In general, can efficiently augment every node \(x\) of a red-black tree with the \(a\) field that stores the result of any function \(f\) that depends only on \(\text{key}[x], f(\text{left}[x]), \text{f(right}[x]).\)

- for **Insert**, field only needs to be updated on path from insertion point to root.
- for **Delete**, only needs to be updated on path from deletion point to root.
- easy to update at every rotation.