Single-Source Shortest Paths

Reading: CLR Sections 23.1 -- 23.2, 25.1 -- 25.2

Single-Source Shortest Paths Problem

Definitions:
In a weighted, directed graph (G, w), the **weight of a path** \(p = <v_0, v_1, ..., v_k> \) is
\[
w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i).
\]

The **shortest-path weight** from a to b is \(\delta(a,b) = \min\{w(p) \mid p \in \text{paths}(a,b)\} \).

Note: \(\min\{\} = \infty \).

A **shortest path** from a to b is any path \(p \) such that \(w(p) = \delta(a,b) \). (May not be unique.)

The **single-source shortest path problem**: given a weighted directed graph ((V, E), w) and a source vertex s in V, find a shortest path from s to every vertex of V.

Notes:

- If a path has negative weight edges in a cycle, then shortest path is not defined. Some algorithms (like the Dijkstra algorithm we will study) assume non-negative weights. Other algorithms (such as Bellman-Ford, which we will not study) can handled negative weight edges as long as they don't appear in cycles.

- The problem of finding the shortest path between two particular vertices (**the single-pair shortest path problem**) may seem easier that the single-source shortest path problem, but no solution for the single-pair problem is known that is asymptotically faster than a solution for the single-source problem!

- The **all-pairs shortest path problem** finds the shortest path between every pair of vertices. We shall not study this problem this semester; CLR Chapter 26 contains details.
Relaxation

Shortest path algorithms maintain for each vertex in the graph:
- a **shortest-path estimate** \(d_s[v] \geq \delta(s,v) \) and
- a **shortest-path parent** \(\text{parent}[v] \) such that \(d_s[v] = d_s[\text{parent}[v]] + w(\text{parent}[v], v) \).

Initialize-Single-Source(G,s)

\[
\text{for } v \in \text{vertices}(G) \text{ do} \\
\quad d_s[v] \leftarrow \infty. \\
\quad \text{parent}[v] \leftarrow \text{nil} \\
\quad d_s[s] \leftarrow 0
\]

Relaxation is an operation on edges \((a, b)\) that attempts to reduce the shortest-path estimate for \(b \).

\[
\text{Relax}((a, b), w) \\
\quad \text{if } d_s[b] > d_s[a] + w(a,b) \text{ then} \\
\quad \quad d_s[b] \leftarrow d_s[a] + w(a,b) \\
\quad \quad \text{parent}[b] \leftarrow a
\]

Shortest path algorithms work by initializing \(d_s[v] \) as above and then repeatedly relaxing edges until \(d_s[v] = \delta(s,v) \). A **shortest-path tree** rooted at the source \(s \) is induced by the parent fields.
Dijkstra's Algorithm

Idea: Grow a shortest-path tree from the source. Every node maintains a shortest-path estimate and parent that indicates the final edge of a path with this estimate. At each step, add the node with the smallest estimate to the tree via the edge to its parent. Use a priority queue to manage extracting the node with the smallest shortest-path estimate.

This algorithm is greedy in the sense that, at each step, it adds the "best" node (node with smallest shortest-path estimate) to the growing shortest-path tree.

\[
\text{Dijkstra}(G, w, s)
\]

\[
\text{Initialize-Single-Source}(G, s)
\]

\[
\begin{align*}
\text{shortest} & \leftarrow \{\text{vertices at which } d_s [v] = \delta(s, v)\} \\
\text{Q} & \leftarrow \text{Build-PQ (vertices(G))} \\
\text{while } \text{not PQ-Empty?}(Q) \text{ do}
\end{align*}
\]

\[
\begin{align*}
a & \leftarrow \text{PQ-Extract-Min}(Q) \\
\text{shortest} & \leftarrow \text{shortest} \cup \{a\} \\
\text{for } b \in \text{Adj}[a] \text{ do} \\
& \quad \text{Relax}((a,b), w) \\
& \quad \text{PQ-Decrease-Key}(Q, b, d_s [b])
\end{align*}
\]

Analysis:

- Build-PQ called once on \(|V|\) elements
- PQ-Extract-Min called \(|V|\) times
- Relax and PQ-Decrease-Key called \(|E|\) times.

| Priority Queue implementation | Build-PQ | \(|V|\)-PQ-Extract-Min | \(|E|\)-PQ-Decrease-Key | Total |
|-------------------------------|----------|------------------------|------------------------|-------|
| unsorted array/list | O(V) | O(V^2) | O(E) | O(V^2) |
| binary heap | O(V) | O(V·lg(V)) | O(E·lg(V)) | O(V·lg(V)) |
| Fibonacci heap | O(V) | O(V·lg(V)) | O(E) | O(V·lg(V) + E) |

The \(O(E\cdot\lg(V))\) time for binary heaps assumes that \(O(V) \leq O(E)\), which is true for connected graphs and even for most unconnected graphs. Note that a final distance of \(\infty\) indicates a vertex that is in a different connected component from the source \(s\).
Breadth First Search

In the simple case where all weights = 1, we can expand a "frontier" outward from the source, level by level. We can color the nodes according to the following scheme:

- white = undiscovered
- gray = frontier node = discovered node whose edges have not been processed
- black = fully processed = discovered node directly connected only to other discovered nodes

A queue (regular queue, not priority queue) can be used to manage order in which nodes are processed.

```python
BFS(G, s)
  (Initialization)
  for v in vertices(G) do
    color[v] ← white  {All nodes originally undiscovered}
    d[v] ← ∞
    parent[v] ← nil
    color[s] ← gray
    d[v] ← 0
  Q ← Enq(s, Empty-Queue)  {Invariant: Q contains only gray nodes.}
  while not Empty-Queue?(Q) do
    f ← Deq(Q)  {Next frontier node to process.}
    for g in Adj[f] do
      if color[g] = white then
        color[g] = gray
        d[g] = d[f] + 1
        parent[g] = f
        Enq(g, Q)
    color[f] = black  {Color node black when completely processed.}
```

Analysis:

- Each vertex enqueued and dequeued once at O(1) time per operation: O(V)
- Each edge scanned once: O(E)
- Total = O(V + E) (= O(E) for a connected graph)