Today

- Representing cards
- Representing integers
 - Sign and magnitude
 - Two's complement
 - Arithmetic algorithms
- Shifting
 - For arithmetic
 - For fun and profit

Integer Representation

- Representation of integers: unsigned and signed
- Casting
- Arithmetic and shifting
- Sign extension

But before we get to integers....

- Encode a standard deck of playing cards.
- 52 cards in 4 suits
 - How do we encode suits, face cards?
- What operations do we want to make easy to implement?
 - Which is the higher value card?
 - Are they the same suit?

Two possible representations

- 52 cards – 52 bits with bit corresponding to card set to 1
 - "One-hot" encoding
 - Drawbacks:
 - Two 32-bit words
 - Hard to compare values and suits
 - Large number of bits required
- 4 bits for suit, 13 bits for card value – 17 bits with two set to 1
 - Pair of one-hot encoded values
 - Fits in one 32-bit word
 - Easier to compare suits and values
 - Still space-inefficient
Two better representations

- Binary encoding of all 52 cards – only 6 bits needed
 - Number each card
 - Fits in one byte
 - Smaller than one-hot encodings.
 - How can we make value and suit comparisons easier?

- Binary encoding of suit (2 bits) and value (4 bits) separately
 - Number each suit
 - Number each value
 - Fits in one byte
 - Easy suit, value comparisons

Example code:

```java
byte hand[5];       // represents a 5-card hand
byte card1, card2;  // two cards to compare
card1 = hand[0];
card2 = hand[1];
...
if ( sameSuit(card1, card2) ) { ... }

static final SUIT_MASK = 0x30;
boolean sameSuit(byte card1, byte card2) {
    return 0 != (card1 & SUIT_MASK) ^ (card2 & SUIT_MASK);
}
```

Compare Card Suits

- Works even if value is stored in high bits

Example code:

```java
byte hand[5];       // represents a 5-card hand
byte card1, card2;  // two cards to compare
card1 = hand[0];
card2 = hand[1];
...
if ( sameSuit(card1, card2) ) { ... }
```

Encoding Integers

- The hardware (and C) supports two flavors of integers:
 - `unsigned` (\(\subset\)) – non-negatives only
 - `signed` (\(\subset\)) – both negatives and non-negatives

- There are only \(2^w\) distinct bit patterns of \(W\) bits, so...
 - Can not represent all the integers
 - Unsigned values: \(0 \ldots 2^W\)
 - Signed values: \(-2^{W-1} \ldots 2^{W-1}\)

Reminder: terminology for binary representations

- "Most-significant" or "high-order" bit(s)
- "Least-significant" or "low-order" bit(s)
Unsigned Integers

- Unsigned values are just what you expect
 - \(b_7b_6b_5b_4b_3b_2b_1b_0 = b_72^7 + b_62^6 + b_52^5 + \ldots + b_12^1 + b_02^0 \)
 - Useful formula: \(1+2+4+8+\ldots+2^{n-1} = 2^n - 1 \)

- Add and subtract using the normal “carry” and “borrow” rules, just in binary.

- How would you make signed integers?

Signed Integers: Sign-and-Magnitude

- Let’s do the natural thing for the positives
 - They correspond to the unsigned integers of the same value
 - Example (8 bits): \(0x00 = 0, 0x01 = 1, \ldots, 0x7F = 127 \)

- But, we need to let about half of them be negative
 - Use the high-order bit to indicate negative: call it the “sign bit”
 - Call this a “sign-and-magnitude” representation
 - Examples (8 bits):
 - \(0x00 = 00000000 \) is non-negative, because the sign bit is 0
 - \(0x7F = 11111111 \) is non-negative
 - \(0x80 = 10000000 \) is negative
 - \(0x80 = 10000000 \) is negative...

Sign-and-Magnitude Negatives

- How should we represent -1 in binary?
 - 10000001
 - Use the MSB for + or - , and the other bits to give magnitude.
 - Unfortunate side effect?

- Another problem: arithmetic is cumbersome.
 - Example:
 - \(4 - 3 = 4 + (-3) \)

Two’s Complement Negatives

- How should we represent -1 in binary?

- How do we solve these problems?
Two's Complement Negatives

- How should we represent -1 in binary?
 - Rather than a sign bit, let MSB have same value, but negative weight.
 \[b_{w-1} = 1 \text{ adds } 2^{w-1} \text{ to the value.} \]
 - For \(i < w-1 \): \(b_i = 1 \text{ adds } 2^i \text{ to the value.} \)

 \[\begin{array}{c|c|c}
 \text{Positive} & \text{Two's Complement} \\
 \hline
 0000 & 1111 \\
 0001 & 1110 \\
 0010 & 1101 \\
 0011 & 1100 \\
 0100 & 1011 \\
 0101 & 1010 \\
 0110 & 1001 \\
 0111 & 1000 \\
 1000 & 0111 \\
 1001 & 0110 \\
 1010 & 0101 \\
 1011 & 0100 \\
 1100 & 0011 \\
 1101 & 0010 \\
 1110 & 0001 \\
 1111 & 0000 \\
 \end{array} \]

 - E.g., \(10_{10} \): unsigned:
 - Two's complement:

 - All negative integers still have MSB = 1.
 - Single zero, simple arithmetic.
 - Cool rules:
 - \(x + \neg x = 0 \)
 - \(\neg x + 1 = -x \)

Two's Complement Negatives

- How should we represent -1 in binary?
 - Rather than a sign bit, let MSB have same value, but negative weight.
 \[b_{w-1} = 1 \text{ adds } 2^{w-1} \text{ to the value.} \]
 - For \(i < w-1 \): \(b_i = 1 \text{ adds } 2^i \text{ to the value.} \)

 \[\begin{array}{c|c|c}
 \text{Positive} & \text{Two's Complement} \\
 \hline
 0000 & 1111 \\
 0001 & 1110 \\
 0010 & 1101 \\
 0011 & 1100 \\
 0100 & 1011 \\
 0101 & 1010 \\
 0110 & 1001 \\
 0111 & 1000 \\
 1000 & 0111 \\
 1001 & 0110 \\
 1010 & 0101 \\
 1011 & 0100 \\
 1100 & 0011 \\
 1101 & 0010 \\
 1110 & 0001 \\
 1111 & 0000 \\
 \end{array} \]

 - E.g., \(10_{10} \): unsigned:
 - Two's complement:

 - "modular" addition: result is sum modulo \(2^w \) for \(W \) bits

Two's Complement Arithmetic

- The same addition procedure works for both unsigned and two's complement integers
 - Simple hardware
 - Design principle: simplicity favors regularity
 - Algorithm: simple addition, discard the highest carry bit

 \[\begin{array}{c|c|c|c}
 \hline
 4 & 0100 & -4 & 1100 \\
 3 & 0011 & 3 & 0111 \\
 \hline
 \text{Examples:} & \text{drop carry} & = 0001 \end{array} \]
Two’s Complement

Why does it work?

- Put another way, for all positive integers \(x \), we want:

 \[\text{bits}(x) + \text{bits}(-x) = 0 \]
 (ignoring the carry-out bit)

- This turns out to be the bitwise complement plus one

- What should the 8-bit representation of \(-1\) be?

\[
\begin{array}{c}
00000001 \\
+ \\
00000000 \\
\hline
00000010 \\
00000011 \\
+ \\
00000000 \\
\hline
00000000
\end{array}
\]

Unsigned & Signed Numeric Values

- Overflow
 - If you compute a number that is too big (positive), it wraps:
 \[6 + 4 = 7 \] \[15U + 2U = ? \]
 - If you compute a number that is too small (negative), it wraps:
 \[-7 + 3 = 0U - 2U = ? \]
 - Answers are only correct \(\mod 2^w \)

- MIPS: overflow exception

- C and Java cruise along silently when overflow occurs... Oops?

Conversion Visualized

Two’s Complement \(\rightarrow \) Unsigned

- Ordering Inversion
- Negative \(\rightarrow \) Big Positive

Values To Remember

- Unsigned Values
 - \(U_{\text{Min}} = 0 \)
 - \(U_{\text{Max}} = 2^w - 1 \)

- Two’s Complement Values
 - \(T_{\text{Min}} = -2^{w-1} \)
 - \(T_{\text{Max}} = 2^w - 1 \)
 - Negative one

Values for \(W = 32 \)

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,294,967,296</td>
<td>FF FF FF FF</td>
<td>11111111 11111111 11111111 11111111</td>
</tr>
<tr>
<td>2,147,483,647</td>
<td>FF FF FF FF</td>
<td>10111111 10111111 10111111 10111111</td>
</tr>
<tr>
<td>-1</td>
<td>7F FF FF FF</td>
<td>01010101 01010101 01010101 01010101</td>
</tr>
<tr>
<td>-2</td>
<td>80 00 00 00</td>
<td>10000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>0</td>
<td>00 00 00 00</td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
</tbody>
</table>
Sign Extension

- What happens if you convert a 16-bit signed integer to a 32-bit signed integer?

Sign Extension Example

- Converting from smaller to larger integer data type
- Java and C automatically perform sign extension.

```java
short x = 12345;
int ix = (int) x;
short y = -12345;
int iy = (int) y;
```

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>12345</td>
<td>00110000 01101101</td>
</tr>
<tr>
<td>1x</td>
<td>00110000 01101101</td>
<td></td>
</tr>
<tr>
<td>y</td>
<td>-12345</td>
<td>11001111 11000111</td>
</tr>
<tr>
<td>iy</td>
<td>-12345</td>
<td>11001111 11000111</td>
</tr>
</tbody>
</table>

Do we really need immediates?

(How to make nothing from anything)

```java
int makeZero(int any) {
    return
}

int makeOne(int any) {
    int zero = makeZero(any);
    return
}

int makeTwo(int any) {
    int one = makeZero(any);
    return
}
```

See also: Church Numerals, for an even more impressive (non-CS240) and vaguely similar idea: http://en.wikipedia.org/wiki/Church_encoding
Shift Operations (Java syntax)

Left shift: \(x << y \)
- Shift bit vector \(x \) left by \(y \) positions
- Throw away extra bits on left
- Fill with 0s on right

Right shift: \(x >>> y \)
- Shift bit vector \(x \) right by \(y \) positions
- Throw away extra bits on right
- **Logical shift**
 - Fill with 0s on left
- **Arithmetic shift**
 - Replicate most significant bit on left
- **Why is this useful?**

<table>
<thead>
<tr>
<th>Argument (x)</th>
<th>(01100010)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x << 3)</td>
<td>(00010000)</td>
</tr>
<tr>
<td>(x >>> 2)</td>
<td>(00011000)</td>
</tr>
<tr>
<td>(x >> 2)</td>
<td>(00011000)</td>
</tr>
</tbody>
</table>

The behavior of \(>> \) in C depends on the compiler! It is arithmetic shift right in GCC. Java: \(>>> \) is logical shift right; \(>> \) is arithmetic shift right.

What else happens when...

- \(x >> n \)?
- \(x << m \)?

What happens when...

- \(x >> n \): divide by \(2^n \)
- \(x << m \): multiply by \(2^m \)

Faster than general multiply or divide operations

Using Shifts and Masks

- Extract the 2nd most significant byte of an integer?

```
x 01100001 01100010 01100011 01100100
```
Using Shifts and Masks

- Extract the 2nd most significant byte of an integer:
 - First shift, then mask: \((x \gg 16) \& \text{0xFF} \)

<table>
<thead>
<tr>
<th>x</th>
<th>01100000 01100010 01100100 01100100</th>
</tr>
</thead>
<tbody>
<tr>
<td>x (\gg 16)</td>
<td>00000000 00000000 01100010 01100010</td>
</tr>
<tr>
<td>((x \gg 16) & \text{0xFF})</td>
<td>00000000 00000000 00000000 11111111</td>
</tr>
</tbody>
</table>

- Extract the sign bit of a signed integer?

\[
\begin{align*}
(x \gg 31) \& 1 & \quad \text{need the “& 1” to clear out all other bits except LSB}
\end{align*}
\]

<table>
<thead>
<tr>
<th>x</th>
<th>01100001 01100010 01100011 01100100</th>
</tr>
</thead>
<tbody>
<tr>
<td>x (\gg 16)</td>
<td>00000000 00000000 01100010 01100010</td>
</tr>
<tr>
<td>((x \gg 16) & \text{0xFF})</td>
<td>00000000 00000000 00000000 12222222</td>
</tr>
</tbody>
</table>

Unsigned Multiplication in C

- Standard Multiplication Function
 - Ignores high order \(w \) bits
 - Implements Modular Arithmetic
 \[
 \text{UMult}((u,v)) = (u \cdot v) \mod 2^w
 \]
Power-of-2 Multiply with Shift

- **Operation**
 - $u << k$ gives $u \times 2^k$
 - Both signed and unsigned

<table>
<thead>
<tr>
<th>u</th>
<th>$u \times 2^k$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\text{Operands: } w \text{ bits}$</th>
<th>$\text{True Product: } w+k \text{ bits}$</th>
<th>$\text{Discard } k \text{ bits: } w \text{ bits}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>$u \times 2^k$</td>
<td>u</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>4</td>
</tr>
</tbody>
</table>

- **Examples**
 - $u << 3 == u \times 8$
 - $u << 5 - u << 3 == u \times 24$
 - Most machines shift and add faster than multiply
 - Compiler generates this code automatically

Two’s complement review

- **4-bit Unsigned vs. Two’s Complement**

| 1 | 0 | 1 | 1 |
| 2 | 1 | 0 | 1 |

- **True Product:**
 - $2^3 \times 1 + 2^2 \times 1 = 1011$
 - $-2^3 \times 1 + 2^2 \times 1 = 1011$

- **Difference:**
 - $11 - (-5) = 16 = 2^4$

- **Math:**
 - $11 - (-5) = 16 = 2^4$
4-bit Unsigned vs. Two's Complement

- **1011**
- $2^3 + 2^2 + 2^1 + 2^0 = 16$
- **(math) difference** = $16 = 2^4$

8-bit representations

<table>
<thead>
<tr>
<th>4-bit unsigned</th>
<th>8-bit unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0010</td>
<td>00000010</td>
</tr>
<tr>
<td>1100</td>
<td>00000100</td>
</tr>
</tbody>
</table>

Sign Extension

<table>
<thead>
<tr>
<th>4-bit</th>
<th>8-bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0010</td>
<td>00000010</td>
</tr>
<tr>
<td>1100</td>
<td>00000100</td>
</tr>
<tr>
<td>?????1100</td>
<td>00001100</td>
</tr>
</tbody>
</table>

C: Casting between unsigned and signed just reinterprets the same bits.
Sign Extension

0010 4-bit 2

00000010 8-bit 2

1100 4-bit -4

10001100 8-bit -116

Overflow/Wrapping: Unsigned

addition: drop the carry bit

15 + 2 17

1111 + 0010 1001

Modular Arithmetic

Overflow/Wrapping: Two’s Complement

addition: drop the carry bit

-1 + 2 1 + 0010 1001

6 + 3 9 + 0011 1001

-7 Modular Arithmetic
Shifting and Arithmetic

\[x = 27; \]
\[y = x \ll 2; \]
\[y = 108 \]

\[x = 27; \]
\[y = x \ll 2; \]
\[y = 108 \]

\[x = 27; \]
\[y = x \ll 2; \]
\[y = 108 \]

\[x = 27; \]
\[y = x \ll 2; \]
\[y = 108 \]

\[x = 27; \]
\[y = x \ll 2; \]
\[y = 108 \]

\[x = 27; \]
\[y = x \ll 2; \]
\[y = 108 \]

\[x = 27; \]
\[y = x \ll 2; \]
\[y = 108 \]

\[x = 27; \]
\[y = x \ll 2; \]
\[y = 108 \]

\[x = 27; \]
\[y = x \ll 2; \]
\[y = 108 \]

\[x = 27; \]
\[y = x \ll 2; \]
\[y = 108 \]

\[x = 27; \]
\[y = x \ll 2; \]
\[y = 108 \]

\[x = 27; \]
\[y = x \ll 2; \]
\[y = 108 \]

\[x = 27; \]
\[y = x \ll 2; \]
\[y = 108 \]

\[x = 27; \]
\[y = x \ll 2; \]
\[y = 108 \]

\[x = 27; \]
\[y = x \ll 2; \]
\[y = 108 \]

\[x = 27; \]
\[y = x \ll 2; \]
\[y = 108 \]

\[x = 27; \]
\[y = x \ll 2; \]
\[y = 108 \]

\[x = 27; \]
\[y = x \ll 2; \]
\[y = 108 \]

\[x = 27; \]
\[y = x \ll 2; \]
\[y = 108 \]

\[x = 27; \]
\[y = x \ll 2; \]
\[y = 108 \]

\[x = 27; \]
\[y = x \ll 2; \]
\[y = 108 \]

\[x = 27; \]
\[y = x \ll 2; \]
\[y = 108 \]

\[x = 27; \]
\[y = x \ll 2; \]
\[y = 108 \]

\[x = 27; \]
\[y = x \ll 2; \]
\[y = 108 \]

\[x = 27; \]
\[y = x \ll 2; \]
\[y = 108 \]

\[x = 27; \]
\[y = x \ll 2; \]
\[y = 108 \]

\[x = 27; \]
\[y = x \ll 2; \]
\[y = 108 \]

\[x = 27; \]
\[y = x \ll 2; \]
\[y = 108 \]

\[x = 27; \]
\[y = x \ll 2; \]
\[y = 108 \]

\[x = 27; \]
\[y = x \ll 2; \]
\[y = 108 \]

\[x = 27; \]
\[y = x \ll 2; \]
\[y = 108 \]

\[x = 27; \]
\[y = x \ll 2; \]
\[y = 108 \]

\[x = 27; \]
\[y = x \ll 2; \]
\[y = 108 \]

\[x = 27; \]
\[y = x \ll 2; \]
\[y = 108 \]

\[x = 27; \]
\[y = x \ll 2; \]
\[y = 108 \]

\[x = 27; \]
\[y = x \ll 2; \]
\[y = 108 \]

\[x = 27; \]
\[y = x \ll 2; \]
\[y = 108 \]

\[x = 27; \]
\[y = x \ll 2; \]
\[y = 108 \]

\[x = 27; \]
\[y = x \ll 2; \]
\[y = 108 \]

\[x = 27; \]
\[y = x \ll 2; \]
\[y = 108 \]

\[x = 27; \]
\[y = x \ll 2; \]
\[y = 108 \]

\[x = 27; \]
\[y = x \ll 2; \]
\[y = 108 \]