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Abstract

In blocks programming languages, such as MIT App Inventor, programs are built by composing

puzzle-shaped fragments on a 2D workspace. Their visual nature makes programming more accessi-

ble to novices, but it also has numerous drawbacks. Users must decide where to place blocks on the

workspace, and these placements may require the reorganization of other blocks. Block representa-

tions are less space efficient than their textual equivalents. Finally, the fundamental 2D nature of

the blocks workspace makes it more challenging to search and navigate than the traditional linear

workflow. Because of these barriers, users have difficulty creating and navigating complex programs.

In order to address these drawbacks, I have developed Folders, a visual organization system,

for App Inventor. Folders, which are modeled after the hierarchical desktop metaphor folders,

allow users to nest blocks within them, and solve many of the aforementioned problems. First, users

can use Folders, rather than spatial closeness, to place and organize blocks, thereby explicitly

indicating a relationship between them. Second, Folders allow users to selectively hide and show

particular groups of blocks and address the issue of limited visible space. Lastly, users are already

familiar with the folder metaphor from other applications, so their introduction does not complicate

App Inventor.

Unfortunately, Folders also introduce new obstacles. Users might expect that putting blocks

into Folders removes them from the main workspace semantically. However, Folders are only

for organizing blocks and decluttering the workspace, and their contained blocks are still considered

part of the main workspace. Furthermore, Folders exacerbate the search and navigation problem.

Since blocks can now be hidden in collapsed Folders , finding a usage or declaration of a variable,

procedure, or component can be more difficult. I have received preliminary feedback on my initial

implementation of Folders and am designing a user study to evaluate my Folders system.
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Chapter 1

Introduction

1.1 Blocks Programming Languages

Blocks programming languages allow users to manipulate code fragments, which are represented as

composable visual blocks that often look like jigsaw puzzle pieces. These languages are not new

but more and more of them are coming into popular use today. Blocks languages are used for

education (e.g. Alice[1], MIT App Inventor[2], Scratch[3]), multimedia (e.g. Wirefusion [4]), video

game programming (e.g. Stencyl[5], GameBlox[6]), and more. The spatial arrangement of blocks,

each representing code fragments, create computer programs. Blocks languages, such as the ones

mentioned above, provide users with a library of code fragments to use in development.

These languages are frequently used in classrooms for many reasons. Blocks programming lan-

guages are easy to learn. Often, they are created for beginner programmers to lower the barrier

to computing. By providing a library of code fragments by means of a graphical menu, users do

not need to memorize the functions with which they create programs. Many languages, such as

MIT App Inventor, come with a plug and socket metaphor suggesting how blocks can be combined

and real-time error checking tools, preventing users from making certain syntax errors and compile

time errors. Blocks languages also teach the concept of abstraction from the very beginning. Each

of the blocks represent an abstraction of high-level behavior in their application. Lastly, learning

programming with blocks create a tactile and kinesthetic learning environment in addition to the

visual and auditory learning environments inherent to the classroom. This, again, makes computing

more accessible because students with different learning styles are given the opportunity to step into

computing.
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Despite these advantages, blocks languages have many drawbacks. Blocks languages come with

large 2D representations of code and their spatial manipulation is cumbersome. A number of these

languages present the user with a 2D workspace, which is very different from the traditional linear

workspace. The 2D nature of the workspace means programmers can only see one frame of the

development workspace at a time. If a large number of block segments are needed to create a

program, it would not be possible for users to view all of them at once. Lastly, sensible organization

and navigation of blocks in an infinitely expanding 2D space is difficult, to say the least.

1.2 MIT App Inventor

MIT App Inventor is an online blocks programming language that allows users with little to no

programming experience to create Android applications. The environment is based on the Blockly

framework, a web-based graphical programming editor where users create computer programs by

connecting jigsaw-puzzle-shaped blocks representing program fragments.

App Inventor was first developed at Google as an open-source web application but has since

migrated to development at MIT. The current version of App Inventor is in its second iteration,

developed and maintained by the App Inventor Development Team. App Inventor Classic refers to

the first iteration developed at Google.

Figure 1-1: App Inventor blocks editor
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1.3 Challenges Facing Blocks Programmers

The visual nature of blocks programming makes programming more accessible to novices but also

has numerous drawbacks and presents several challenges to its users. First, users must deliberately

decide where to place blocks on the workspace and these placements may require the reorganization

of other blocks. Second, block representations of code are less space efficient than their textual

counterparts. Third, the fundamental 2D nature of the blocks workspace makes it more challenging

to search and navigate than the traditional linear workflow.

Because spatial closeness is the only method for blocks organization in App Inventor, blocks pro-

grammers are forced to consistently shift block placements around in the workspace. The necessity

to constantly reorganize blocks, in order to demonstrate a semblance of logical flow, is tedious. Ad-

ditionally, adding new blocks becomes a very involved process. Programmers may find it preferable

to use inelegant code rather than creating a new procedures and use abstraction methods.

Figure 1-2: A spatially organized App Inventor program
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Figure 1-3: The same program with an additional block causing overlap and organizational discord

Since blocks are inherently more spatially involved than their textual equivalents, programmers

must also deal with the fact that only a percentage of their code can be visible in one workspace

window. Without a clearer overview of their code, programmers could not realize that a similar

procedure had already been defined and recreate an existing procedure. On top of that, a lot of

scrolling is required to survey the entire workspace (Figure 1-4). By the time the programmer

reaches the block they were searching for, they could have forgotten the reason they were trying to

find the block in the first place.

Figure 1-4: Scrolling is necessary to see all the blocks in the workspace

Searching and navigating the workspace is, unfortunately, a problem inherent to all blocks pro-

gramming languages with a 2D workspace. With textual languages, tools have been developed for

searching and navigation within linear workspaces. Text editors associated with programming, such

as Sublime, IntelliJ, and Emacs create the workspace for the, traditionally vertical, linear workflow
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of textual languages. While users can build programs horizontally, it is considered best practice to

limit the number of characters on each line. In fact, there are coding standards associated with

each textual programming language; however, the lack of coding standards for blocks programming

languages is glaring.

In order for programmers to utilize blocks programming languages to their maximum potential,

a number of tools must be developed. These tools include searching and navigation, blocks organi-

zation, and more. This thesis focuses on the design and development of a blocks organization tool.

The tool should, ideally, be recognizable and easy for users to pick up. After this tool is developed,

coding standards for blocks programming languages can be developed and implemented using the

new system for blocks organization.

1.4 Existing Tools for Visual Organization in App Inventor

As mentioned previously, App Inventor programs often require large numbers of blocks. In fact,

applications with Google Play Store marketable value would require hundreds of blocks. While App

Inventor does provide some methods of organizing blocks, users cannot easily organize the blocks

exactly the way they want. These block organization tools are available to the user in a right-click

drop down menu (Figure 1-5). The tools are split into two varieties – view and arrange.

Figure 1-5: Block segment view and arrange options available through right-click drop down menu

Figure 1-6: Expanded block segment
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Figure 1-7: Collapsed block segment

There are two ways of viewing block segments — expanded (Figure 1-6) and collapsed (Figure

1-7); and 3 ways of arranging block segments — horizontally (Figure 1-8 and 1-11), vertically

(Figure 1-9 and 1-12), and by category (Figure 1-10 and 1-13). From Figures 1-8- 1-13, the

differences between each of the view and arrange options can be seen.

While these options are useful for spreading blocks out onto the development workspace and

allowing users to see each block segment, users must prioritize access to the individual blocks or

visualization of the entire program. Although in smaller programs this becomes less of a problem,

programs with “real use” are rarely small enough that every block can be seen without scrolling

through the workspace. Block organization is also less of a problem in smaller programs because

users can see every block in one frame of the development workspace.

In addition to the prioritization dilemma, there is also no simple way for App Inventor to take

user preference into organizing block segments beyond horizontal, vertical, and category. If a user

placed Block Segment 1 and Block Segment 2 close to each other on the development workspace

before using one of the arrange options, there is no guarantee Block Segment 1 and 2 will remain

close to each other. Furthermore, collapsing a block makes it difficult to understand the purpose

and structure of the program and can create visibility problems when expanded. Since users tend

to have preferences in the way they organize code, these right-click options, while powerful, have

numerous drawbacks.
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Figure 1-8: Collapsed block segments organized horizontally

Figure 1-9: Collapsed block segments organized vertically
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Figure 1-10: Collapsed block segments organized by category

Figure 1-11: Expanded block segments organized horizontally
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Figure 1-12: Expanded block segments organized vertically

Figure 1-13: Expanded block segments organized by category

1.5 Folders : A New Blocks Organization Tool

In order to address the deficiency in user preference-driven block segment organization, I am intro-

ducing Folders , a visual organizational tool for App Inventor.
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1.5.1 Main Workspace

Figure 1-14: The main workspace

The main workspace is the development surface in App Inventor’s blocks editor. There is a warning

and errors indicator, trashcan, and user created blocks on the main workspace.

1.5.2 Mini-Workspaces

Figure 1-15: A mini-workspace

I developed mini-workspaces (Figure 1-15) for Folders . Mini-workspaces are, as the name implies,

smaller workspace instances. A mini-workspace has the same properties and functionality (e.g.

scrollable, contains blocks, etc) as the main workspace but is a member of the main workspace

(Figure 1-14). Multiple mini-workspaces can be expanded and can overlap. Mini-workspaces do

not have a separate warning and error indicators or trashcan.

Figure 1-16: Overlapping mini-workspaces
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1.5.3 What are Folders ?

Figure 1-17: A Folder

A Folder can exist in two states - expanded and minimized. A minimized Folder is the Folder

block shown in Figure 1-17. An expanded Folder consists of two parts - the Folder block and

the Folder’s mini-workspace, shown in Figure 1-18. Blocks in the Folder are shown in the

mini-workspace, which is a smaller development workspace.

Figure 1-18: An Expanded Folder

Figure 1-19: An empty Folder in the block palette

Folders are created by pulling a minimized, empty Folder out of the block palette, shown in

Figure 1-19. Block segments can be added or removed from Folders by 1) expanding a Folder

and 2) dragging the block into or out of the Folder’s mini-workspace.

For more details on the design and usage of Folders, including numerous functions not described

here, see Section 3.1 Design.
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1.5.4 Design of Folders

The driving force behind the design of Folders is the need for a user-preference driven blocks

organization tool. Folders should not interfere with the existing methods for block rearrange-

ment (arrange horizontally, arrange vertically, sort blocks by category) and block display (collapsed,

expanded), instead provide a new set of functionality.

Many of the design choices made for Folders were for the sake of familiarity to the user. When

possible, the appearance and behavior of Folders in App Inventor perfectly mimic the behavior of

folders on Desktop computers. The addition of Folders to App Inventor is not meant to further

complicate App Inventor, but rather simplify. Thus, by using the design of Desktop folders as the

foundation of App Inventor Folders, users will already have some familiarity with its usage and

behavior.

Presenting users with a tool they are already so familiar with does create complications. If

Folders for App Inventor does not replicate the expected behavior correctly, there will be significant

dissonance for the user. This may cause the user to become frustrated with App Inventor as a whole

and discourage he or she from continuing to use App Inventor. However, the necessity for a tool

such as Folders far outweighs its potential drawbacks.

1.5.5 Why Folders ?

Users are already familiar with the Desktop metaphor and the paper paradigm, with it the idea

of using virtual folders to organize files, images, and other folders. In a 2002 study on the design

of computer icons, it was shown that a user’s familiarity with the icon is very important [7]. The

more recognizable an icon, the more locatable and usable. Since users are familiar with folders, the

usability and simplicity of Folders will help users adapt to using them while creating Android

applications in App Inventor.

In addition, the familiarity of Folders does not result in further steepening of the App Inventor

learning curve. App Inventor is a teaching tool with a significant learning curve. Quite often, first-

time App Inventor users are also young, beginner coders. Teaching tools are most effective if it

doesn’t take long to learn how to use the tools itself. Through user studies, I hope to show that

Folders do not make App Inventor more difficult and can improve the user experience for first-time

users and seasoned users.

There is one distinction between App Inventor Folders and Desktop metaphor folders - although

block segments are “in” Folders , they are only visually organized “into” Folders . The block
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segments are still in the main workspace, the block segments are still enumerated as in the main

workspace, the parent blocks are still considered top blocks of the main workspace, and the Folder

block isn’t considered a top block of the main workspace. In other words, there are no semantic

changes with the introduction of Folders .

Folders give the user a lot of freedom in terms of organizing blocks. The way blocks are or can

be organized is entirely up to the user and their preference. Users can place relevant block segments

into separate Folders rather than different parts of the development workspace. This will also

allow users to take advantage of the right-click arrange options.

Lastly, by placing block segments into Folders and minimizing them, users can now work on

one block segment without running into another block segment. The development workspace in

blocks programming languages are limiting and developing in such a workspace can result in blocks

connecting with the wrong blocks or users running out of space to develop in. Folders will truly

allow users to put blocks away and let users develop without worrying about running out of space

or creating unintentional connections (Figures 1-20 and 1-21).

Figure 1-20: A large program without Folders
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Figure 1-21: The same program with Folders

1.6 Development Progress & Hurdles

Development for Folders happened in 3 distinct stages: 1) Designing and prototyping the ap-

pearance and behavior of Folders , 2) Developing the visual appearances of Folders , and 3)

Implementing the behavior of Folders . In each of these stages, the scalable vector graphics (SVG)

nature of Folders and App Inventor’s blocks editor presented itself in numerous challenges.

Blocks programming languages are inherently difficult to develop for - the correct and expected

behavior is neither simple or easy to create. For example, blocks and Folders can only exist in one

workspace and that workspace is bounded. When a block or Folder is dragged out of a Folder’s

workspace, it should be entirely visible as it crosses a boundary. To implement this correct behavior,

every time a mouseDown action is captured for a block or Folder, the block or Folder is moved

to the larger workspace. On mouseUp, if the block or Folder is over a mini workspace, it will be

moved into the mini workspace. Each of these challenges will be discussed thoroughly in Chapter 4

- Implementation.

1.7 Road Map

The rest of this document is organized as below:
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• Chapter 2 - Related Work discusses my past blocks editor work with App Inventor, folders

of the Desktop Metaphor, and how other blocks programming languages tackle the blocks

organization problem.

• Chapter 3 - Design explores the intentions and process of designing Folders.

• Chapter 4 - Implementation details the development process of creating Folders and getting

Folders to where it is today.

• Chapter 5 - User Studies analyzes the initial feedback and informal user testing Folders

received and proposes a user study for further and more thorough testing of Folders.

• Chapter 6 - Conclusion and Future Work examines the current state of Folders and suggests

the next steps to further improve Folders.

• Appendices include any code created or modified for the implementation of Folders.
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Chapter 2

Related Work

2.1 Past Work with MIT App Inventor

I have collaborated with the MIT App Inventor Development team on extending App Inventor’s

user interface, specifically with the blocks editor (Figure 1-1). Some of my previous work included

zooming and scaling for App Inventor’s blocks editor and creating an indented socket shape that

emphasizes nesting of subexpressions.

2.1.1 Indented Value Inputs

Prior to my work with indented value inputs, App Inventor had only 2 input types - value and

statement. This presented a problem with procedure and variable blocks (Figure 2-1 and 2-2).

First, value inputs did not demonstrate scope of the variables properly. There is a significant visual

difference between the value input and statement input versions of the same block. Second, while

the statement input versions clearly showed scope of the variables initialized for the procedures, the

value input versions did not. Lastly, there is a lot of space wasted with the input value versions of

the block (Figure 2-3), which greatly exacerbates the problem of the already limited visibility of

the workspace for programmers.
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Figure 2-1: Statement input of variables & procedures

Figure 2-2: Value input of variables & procedures

Figure 2-3: Space wasted with value input of variables & procedures

In order to solve these problems, I implemented a new input - indented value input. This new

input would act as a value input in all aspects except for its appearance. Its appearance would

be a hybrid of the statement input and value input. This solved all 3 of the problems presented -

scope is demonstrated properly, the blocks are now visually similar, and very little space is wasted

(Figure 2-5). This improvement makes a big difference because 2D representations already occupy

more space than its textual counterparts.
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Figure 2-4: New indented value input of variables & procedures

Figure 2-5: Figure 2-3 with new indented value inputs

2.1.2 Zooming & Scaling

Zooming and scaling for App Inventor’s blocks workspace is another project that would greatly

benefit the user interface of the Blocks Editor. In App Inventor Classic, there was a way for the user

to see a mini-map of the entire workspace (Figure 2-6). Because this feature is no longer available

in App Inventor, users cannot see an overview of their entire workspace. Since the visible area of

the workspace is limited, zooming and scaling would allow for programmers to see more, or less, of

the entire workspace.

Figure 2-6: App Inventor Classic mini-map
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Figure 2-7: Zoom for App Inventor blocks editor

Zooming and scaling would benefit a variety of App Inventor programmers. First, users can

zoom out and make more of the workspace visible. This would allow the users to have a better sense

of their project and also make navigation of the workspace easier. Second, users with low vision

can zoom in and better see the details of each block. Third, developers for App Inventor, especially

those interested in working with the scalable vector graphics (SVG) layer of development, can see

the specifics of each svg group and line, allowing for small detailed changes to the blocks editor.

I implemented zooming and scaling by creating two icons, a plus magnifying glass and a minus

magnifying glass, which can be seen in the upper right hand corner of the mini-workspace. By

clicking on a magnifying glass, the workspace will magnify or reduce.

Figure 2-8: Workspace without and with Zoom
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2.2 Folders of the Desktop Metaphor

The Desktop Metaphor is an unifying interface metaphor describing the graphical user interface of

modern personal computers. The idea behind the Desktop Metaphor is that users can treat the

computer’s desktop as a physical desktop where objects such as files and folders can be placed.

These objects can be opened in a window, similar to how a file or folder can be placed on top a

desktop.

In this thesis, Folders for App Inventor will be compared to and based off of folders of Mac OS

X (Yosemite), which is an implementation of the Desktop Metaphor. The purpose and behaviors of

folders I hope to implement for Folders include:

• Usage of Folders to “create” more space (Figure 2-9).

• Using Folders as an organization method for blocks (Figure 2-10).

• Recursively nestable Folders (Figure 2-11.

• Highlighting of Folders to make location of blocks unambiguous (Figure 2-12).

Figure 2-9: Desktop folders are used to create more space to put files, images, and other objects

away.

27



Figure 2-10: Desktop folders can be used to organize objects by functionality, type, or any other

user defined method.

Figure 2-11: Desktop folders are nestable.
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Figure 2-12: Desktop folders use highlighting to make location of objects unambiguous.

2.3 Organization

We use organization in many aspects of our digital life, such as organizing files on our computer

with folders, emails in our inbox with labels, and code in our programs with files. In each of these

systems, search functionalities are available in addition to the organization ones mentioned above.

However, in a study conducted about search versus organization with the usage of folders in non-

specific project work, participants said that it would not be possible for them to depend exclusively

on search. These participants cited 3 reasons: 1) trust, 2) control, and 3) visibility/understandability

[8]. Although search is becoming more prevalent nowadays, it has not been able to completely replace

the necessity of organization tool likes folders. As such, it is increasingly more important to have

tools like search and organization available for App Inventor users.

In terms of organization in textual programming languages, programmers have a number of tools

at their disposal. With large software systems, engineers often use clustering to group procedures and

variables into classes. These clusters can then be further grouped to create subsystems of behaviors

[9]. Code conventions also exist for many textual programming languages. These guidelines help
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pass code on from one engineer to another by creating more legible and stable programs with fewer

bugs [10]. Additionally, there are a number of design patterns available for different languages.

The module pattern, used frequently in Javascript, is an infrastructure that maintains legible and

organized source code [11].

The importance of source code organization comes from the fact that good code comes from

good organization of code [12]. There are many guidelines, books, and articles on how to write good

code available for programmers. The question for App Inventor, especially as a teaching tool, is how

can one expect to learn how to write good code if there isn’t a code organization tool in place and

available. Because users still correlate source code organization with a file tree [13], creating a folder

system for block organization in App Inventor is a good first stepping stone.

In the end, it is important for an organization and search system to work hand in hand, creating

a good development environment. When thinking about information retrieval in computer systems,

a Library-Librarian metaphor could be used. A well organized library, or source code, allows a

librarian, a search tool, to find the targeted information easily [14]. With this in mind, having a

good organization system is of utmost importance. Only after doing so will a search and navigation

system complete the Library-Librarian metaphor for App Inventor.

2.4 Blocks Organization in Other Blocks Languages

Blocks organization methods in five other blocks languages, spanning the fields of education, gam-

ing, and multimedia, were studied to determine what efforts have been made in the field of visual

programming for organization. These five languages were Pencil Code[15], Scratch[3], Stencyl[5],

Gameblox[6], and WireFusion[4].

Out of these five languages, Scratch, Stencyl, and Gameblox have similar blocks organization

methods and two do not. The blocks organization methods presented by those three languages fol-

lowed a different design from Folders . Users can create additional workspaces but these workspaces

cannot nest recursively and, with the exception of Gameblox, blocks cannot be transported between

workspaces. While Folders followed a tree structure, these methods were list structured. Explicit

block organization methods are not seen in any of these five languages and users must use spatial

closeness to represent relationships between blocks.
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2.4.1 Pencil Code

Pencil Code is a browser-based, “collaborative programming site for drawing art, playing music, and

creating games. It is also a place to experiment with mathematical functions, geometry, graphing,

webpages, simulations, and algorithms” [15]. Pencil Code has a linear coding environment similar to

that of textual languages and code can easily be translated between blocks and text. In fact, blocks

in Pencil Code are CSS stylizations of text rather than an abstraction of high-level actions.

In terms of blocks organization, Pencil Code does not allow users to create additional workspaces.

In fact, the workspace is not 2D and executable code blocks must all be connected vertically. One

of the advantages of the linear workspace is that Pencil Code can easily handle programs with tens

of thousands of lines of code.

Figure 2-13: Pencil Code user interface

Figure 2-14: Pencil Code blocks are graphical borders surrounding textual code
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2.4.2 Scratch

Scratch “is a free educational programming language that was developed by the Lifelong Kinder-

garten Group at the Massachusetts Institute of Technology (MIT) with over 5 million registered

users... Users program in Scratch by dragging blocks from the block palette and attaching them to

other blocks like a jigsaw puzzle” [16].

Blocks organization in Scratch is centered around sprites, or objects that perform actions in

Scratch programs. Each sprite has its own 2D scripts area. Blocks in the script areas can be cleaned

up using a built-in right-click menu option. Nested workspaces and explicit blocks organization

methods are not available in Scratch.

Figure 2-15: Scratch user interface

Figure 2-16: Each sprite in Scratch has its own scripts area
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Figure 2-17: Users can clean up the scripts area using a right-click function

2.4.3 Stencyl

Stencyl is a mobile, web, and platform game creation tool and allows users to create these games

without code. Although Stencyl is presented as a tool for creating games without code, there are

options for users to program in Java or other languages as well as a conversation method between

blocks and text.

In Stencyl, code is organized into behaviors, which are split into actors and scenes. Each of

these behaviors have their own development workspace. Stencyl’s design environment is based off

of Scratch and, like Scratch, do not provide nested environments or explicit block organization

methods.

Figure 2-18: Stencyl Design Mode
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Figure 2-19: Each behavior in Stencyl has its own workspace

Figure 2-20: Users can arrange blocks using a right-click function

2.4.4 Gameblox

Gameblox “is a game editor that uses a block based programming language to allow anyone to make

games” [6]. This platform, like App Inventor, uses the Blockly framework for its blocks editor.

A feature available in Gameblox, but not in Blockly or App Inventor, is blocks pages. Blocks

pages are additional workspaces that users can create. These blocks pages are like the workspaces

attached to sprites in Scratch and behaviors in Stencyl and allow users to transport blocks from one

page to another. However, workspaces cannot be nested and explicit block organization within a

singular workspace is not available.
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Figure 2-21: Gameblox blocks editor

Figure 2-22: Additional block pages can be added

Figure 2-23: Users can arrange blocks using various right-click functions

2.4.5 WireFusion

WireFusion provides a tool for “quick creation of interactive 3D presentations for the internet” [4].

Interaction and functionality can be added to 3D models using WireFusion, which is not a blocks

language but rather a dataflow language.
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WireFusion has a singular 2D script area and does not provide users with the option of creating

additional workspaces. Block are explicitly connected with each other with the means of arrows and

their relationships are explicitly defined.

Figure 2-24: Wirefusion work area

Figure 2-25: Wirefusion script area
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Chapter 3

Design

One of the major ideas behind the design of Folder is habituation, or an action that becomes

habit through constant use. Folders is seen through numerous operating systems and users are

very familiar with its usage on a Desktop. Consistency between these applications is crucial [17,

Chapter 1]. Gestures or actions that work on the Desktop but not in App Inventor will stress the

user. In this chapter, the design choices of each action and functionality will be discussed in depth.

3.1 Overview

3.1.1 Adding a Folder

A Folder can be added to the workspace by dragging one out of the Folder drawer, similar to how

a user can add a block to the workspace.

Figure 3-1: Adding a new Folder to the workspace

This is the biggest difference in design choice between Desktop folders and App Inventor Fold-

ers. On the Desktop, a folder is commonly created with a right-click action (Figure 3-2) but is also
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less commonly created using the File dropdown in the Menu bar (Figure 3-3). Dragging a Folder

out from the Folder drawer is similar to creating a folder using the File Menu option but its design

comes directly from how blocks are created in App Inventor. This was a deliberate choice made to

better present the new feature to users. While a right-click menu option could have been viable,

it would be not be as obvious a new feature to user. Since there was much demand for a tool like

Folders, it seemed better to present it in a much more visible fashion, as a new Drawer.

Figure 3-2: Creating a new folder on the desktop with a right-click

Figure 3-3: Creating a new folder on the desktop with the file menu

3.1.2 Expanding & Collapsing a Folder

Folders can exist in two states: collapsed and expanded. In its collapsed state, a Folder is a

pseudo-block and presents itself like that of a block (Figure 3-4). A Folder is a pseudo-block in

that it does not represent a code fragment and does not have the capability to form connections to

other blocks. Displayed on the Folder pseudo-block is a [+] icon, indicating that the Folder is

collapsed and can be expanded by pressing the icon. While clicking an icon to expand or collapse

a Folder is not the expected behavior from a Desktop folder, it is consistent with blocks in App

Inventor.

Figure 3-4: A collapsed Folder

In its expanded state, a Folder is both a pseudo-block and a mini-workspace (Figure 3-5).
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When the [+] icon is pressed, the icon changes to [–] and the Folder’s mini-workspace is displayed.

If blocks have already been added to the Folder, these blocks will be displayed in the Folder’s

mini-workspace (Figure 3-6).

Figure 3-5: An expanded Folder

Figure 3-6: An expanded Folder with blocks in its mini-workspace

This design directly mimics that of a collapsed or expanded folder on any desktop computer

(Figure 3-7 and 3-8).

Figure 3-7: A collapsed folder on a desktop

39



Figure 3-8: An expanded folder on a desktop

3.1.3 Deleting a Folder

A Folder can be deleted in the same ways that a block can be deleted: 1) right-click action (Figure

3-9), 2) drag over trash can (Figure 3-10, and 3) delete keyboard stroke. A block can be deleted in

these same ways.

Figure 3-9: Right-click actions of a Folder

Figure 3-10: Deleting a Folder using the trash can

This design also mimics that of deleting a Desktop folder (Figures 3-11 and 3-12).
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Figure 3-11: A folder can be deleted with a right-click drop down menu option

Figure 3-12: A folder can be deleted by dragging it to the trash

3.1.4 Adding a Comment to a Folder

A comment can be added to a Folder using a right-click action, similar to that of a block (Figure

3-9). Although adding comments to a folder is not a feature available on the Desktop, this is a

feature available to blocks in App Inventor (Figure 3-13).

Figure 3-13: A comment can be added to a block in App Inventor
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3.2 Editing Contents in a Folder

3.2.1 Moving a Block into a Folder

A block can be added into a Folder by clicking and dragging the block over the corresponding

mini-workspace and letting go of the cursor (Figure 3-14). The mini-workspace the block will be

placed in will be highlighted as visual feedback to the user. When mini-workspaces overlap in the

workspace, the appropriate mini-workspace will be highlighted. In other words, if the block is added

in the overlap region, the mini-workspace on top will be highlighted and the block will be added

there.

Figure 3-14: Moving a block into a Folder

Figure 3-15: Highlighting of overlapping mini-workspaces

This behavior is also seen with folders on the Desktop (Figures 3-16 and 3-17).
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Figure 3-16: Moving a file into a folder

Figure 3-17: Highlighting of overlapping folders

3.2.2 Moving a Block out of a Folder

A block can be removed from a Folder in an identical process as moving a block into a Folder -

click and drag the block over the new workspace, whether it is the main workspace or another mini

workspace, and let go of the cursor (Figure 3-18). If no mini-workspaces are highlighted, the block

will be placed in the main workspace. If a mini-workspace is highlighted, the block will be placed

there.
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Figure 3-18: Moving a block out of a Folder

The behavior is similar but not identical on the Desktop. When a file is dragged from one folder

to another, a semi-transparent copy of the file is moved (Figure 3-19. When the move is complete,

the original file will move completely to the new space. Because of the strong colors and limited 2D

available, I did choose to not imitate this behavior.

Figure 3-19: Moving a file out of a folder

3.2.3 Deleting Blocks in a Folder

Deletion of blocks inside or outside a Folder is the same process. A user can delete the block by

1) dragging it to the trash can, 2) using the delete keyboard stroke, or 3) right-click delete. This

behavior is identical to deleting blocks from the main workspace, which is intended.
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3.2.4 Connecting Blocks

The normal behavior of blocks when dragged is exhibited when blocks are dragged into or out

of Folders. In other words, when a block’s connections are within the preset drag radius of a

matching connection, the connections will highlight, indicating a viable connection. In a singular

move, a block can be moved from one workspace to another and make a connection.

Figure 3-20: Moving a block and making a connection in one move

A similar, though different, functionality of Desktop folders is the ability to move a file from one

workspace to another and add it to a nested folder in one move (Figure 3-21). This behavior shows

that actions that work when two elements are in the same workspace should also work when the two

elements are in two separate workspaces.
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Figure 3-21: Moving a file to a nested folder in one move

3.3 Visual Aesthetics & Feedback

Visual feedback for the user is very important in blocks programming languages. If the expected

behavior does not line up with the exhibited behavior, users can become frustrated. By giving users

visual feedback, the expected behavior be the same as the exhibited behavior and if that is not the

desired behavior, users have a hint of what to do to obtain the desired behavior.

3.3.1 Highlighting of the Mini-Workspace

One of the most important visual feedback elements of Folders is highlighting of the mini-

workspace on drag of blocks (Figures 3-14 and 3-15). Because of the visual feedback, users know

exactly where their selected block will go, creating unambiguous behavior. The visual feedback is

also seen on the Desktop (Figure 3-16).

3.3.2 Making Connections

Prior to Folders, App Inventor highlights viable pairs of connections. This behavior is still ex-

hibited with the addition of Folders and adapted to connections made whilst adding or removing

a block from a Folder (Figure 3-22). As mentioned previously, behavior exhibited when two

elements are in the same workspace should also be exhibited when the elements are in two separate

workspaces.
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Figure 3-22: Highlighting of connections during a move

3.3.3 Visual Feedback vs Unexpected Behavior

In the example shown in Figure 3-23, some unexpected behavior is demonstrated. A block is

dragged to the edge of a Folder, close to a matching connection. Without visual feedback, a user

may expect the blocks to connect; however, the exhibited behavior would be the dragged block

added to the Folder. Without highlighting of the mini-workspace, a user would be confused and

frustrated. With the visual feedback and the realization that the connection is not highlighted while

the mini-workspace is, the user understands why the exhibited behavior is exhibited and what to do

to make the connection.

Figure 3-23: Visual feedback overcoming unexpected behavior
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Using visual feedback to make ambiguous behavior clear is also seen with Desktop folders (Figure

3-24);

Figure 3-24: Visual feedback overcoming unexpected behavior on the Desktop

3.4 Semantics

Folders are purely a visual organizational tool for grouping blocks. While the visual semantics

of the blocks in the workspace are manipulated, the semantics of the code fragments each block

represents is unaffected. Blocks added to Folders are not abstracted and treated any different

from blocks in the main workspace. Folders are not considered blocks and do not have code

fragment counterparts. In other words, the final compiled product of App Inventor will not be any

different when created with or without Folders.
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Chapter 4

Implementation

MIT App Inventor’s blocks editor uses the Blockly framework, which creates the blocks workspace

using scalable vector graphics (SVG), as the foundation of the blocks workspace. Blockly handles

the numerous nuisances of SVG using the closure library and Javascript classes. In this section, the

various challenges of developing Folders, as well as their solutions, will be discussed

The first challenge faced while developing for Folders is the hesitation to change Blockly source

code. Because App Inventor relies heavily on Blockly but does not directly contribute to Blockly’s

source code, changes to the Blockly source code do not carry through to Blockly updates. Therefore,

any changes to the source code will have to be reimplemented with each large scale Blockly update.

This challenge did not present itself as a true problem until the latter half of development.

4.1 Folder as a “Block”

4.1.1 Adding Folders to the Drawer Palette

The first step taken to create Folders was defining a Folder “block”. Folders were first added

to the Palette and then a Folder “block” was then added to the folders drawer. In order to this,

3 separate files were edited or added to appinventor/appengine/src/com/google/appinventor/:

1. images/folder.png

2. client/Images.java

3. client/boxes/BlockSelectorBox.java

folder.png is the beige icon representing the folder Palette item.
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In Images.java, a new Palette item, folders, was added:

1 @Source("com/google/appinventor/images/folders.png")

2 ImageResource \folders ();

In BlockSelectorBox.java, the Palette item Folders was added to the array of drawer names

and the beige square image of Folders was linked with Folders :

1 private static final String BUILTIN_DRAWER_NAMES [] = { "Control", "Logic", "Math", "

Text",

2 "Lists", "Colors", "Variables", "Procedures", "\folders" };

1 bundledImages.put("\folders", images .\ folders ());

With these three changes, Folders are now added to the list of built-in drawers in the Palette

browser (Figure 4-1). Having added Folders to the list of drawers, the Folder “block” needs to

be created so instances of Folders can be added to the workspace.

Figure 4-1: A new palette item - Folders

4.1.2 Folder as a Block

Folders was first a block before it became a pseudo-block. A Folder block had no connections

and was labeled “Folder [the Folder ’s id]” (e.g. folder1, folder20, etc). In order to add Folder

as a block to the Folders drawer, a new set of blocks was defined in the new file appinventor/block-

lyeditor/src/blocks/folders.js:
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1 ’use strict ’;

2

3 goog.provide(’Blockly.Blocks.folder ’);

4

5 Blockly.Blocks[’folder ’] = {

6 category: "folders",

7 init: function () {

8 this.setColour(Blockly.FOLDER_CATEGORY_HUE);

9 this.appendDummyInput ()

10 .appendField("\folder"+this.id);

11 },

12 typeblock: [{ translatedName: Blockly.Msg.LANG_FOLDERS_FOLDER }]

13 };

At this point, a Folder will appear in the folders drawer. This Folder instance will not yet

have the [+]/[—] icons and is still considered a block. Up to this point, development for Folders

is fairly straightforward. Folders has been considered a new set of blocks, with its own specialized

drawer. The next step is to create Folders as a pseudo-block and the path becomes complicated.

Figure 4-2: A new “block” - Folder

4.2 Folder , a Pseudo-Block

In order to determine the first step in developing Folders as a pseudo-block, the differences between

Folders and blocks had to be considered. What makes Folders special and what needs to be

implemented to show this?

First, there needs to be a way to keep track of every Folders in the workspace. Second,
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Folders each have a mini-workspace associated with it. Third, we need to keep track of whether

the Folder is collapsed or expanded. With these three things in mind, development for Folders

can begin.

Because Folders share most of blocks’ functionality, folder.js inherits from block.js. In order to

address the differences mentioned above, a few block functions needed to be rewritten for Folders:

1) obtain, 2) initialize, 3) fill, 4) getIcons, 5) initSvg, and 6) terminateDrag . In order to keep

track of all Folders in the workspace, a global variable Blockly.ALL FOLDERS was created. Each

Folder pseudo-block has a miniworkspace property, which points to the miniworkspace associated

with the Folder. Another property added to Folders was the expandedFolder boolean which is

toggled whenever the Folder icon is clicked. Each of the 6 methods mentioned above had, usually,

small changes from their blocks counterpart in order to address these necessary Folder properties.

In addition to the defining the Folder class, a new folder svg class must be defined. The

folder svg inherits from block svg and has very few but important differences from block svg. The

most important difference is the creation of the folderIcon in the init method.

The implementation of folder.js can be found in Appendix B. Phase 1, which is described here,

ends at line 171. The implementation of folder svg.js can be found in Appendix C.

4.3 Folder Icon & Mini-Workspace

Development for the Folder icon and mini-workspace went through multiple iterations. The first

consideration, which persisted through to the current iteration, is basing the Folder icon and mini-

workspace off of the mutator icon and mutator bubble (Figure 4-3). This made sense because the

mutator bubble is a mini-workspace and the mutator icon triggers the expansion and collapse of the

mini-workspace.
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Figure 4-3: A text block with mutator icon and mutator bubble

4.3.1 Folder Icon

The process of creating the Folder icon class (folderIcon.js) was much simpler than creating the

mini-workspace class. The Folder icon class is very similar to the mutator icon class (mutator.js),

which inherits from the icon class (icon.js). The basic functionality of the Folder icon that needed

to be created were:

1. Clicking the icon would collapse or expand the mini-workspace

2. Clicking the icon will toggle [+] to [–] and [–] to [+]

3. Clicking the icon will bring the Folder to the top of the ALL FOLDERS list, which will allow

the Blocks Editor to keep track of which Folder is visually on top

4. The above behavior is not executed when the Folder block is in a flyout

Behavior that needed to be reproduced from either the mutator icon or the general icon classes

were:

1. Creating the SVG of icon

2. Displaying the icon in the correct location on the Folder block

3. Returning the location of the icon

4. Disposing the icon
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5. Returning whether the icon is visible

Having these guidelines in mind, implementing the Folder icon class involved piecing together

various methods from mutator.js and icon.js in order to satisfy the reproduction half, and creating

or editing several methods to create the functionality specific for a Folder icon.

The implementation of folderIcon.js can be found in Appendix D.

4.3.2 Mini-Workspace

As mentioned before, development for the mini-workspace was much more complex. Originally, the

mini-workspace was based off of the bubble class (bubble.js) but the bubble class had many methods

which were unnecessary for a mini-workspace. Because a bubble is intended to pass mutation

information to the parent block, these methods made sense for the bubble class but did not at all

for a mini-workspace. Additionally, a bubble is anchored to its parent block but a mini-workspace

should not be (Figure 4-4). Mini-workspaces could also be based off of flyouts, which are also some

form of a mini-workspace. Again, flyouts came with too much functionality.

After much experimentation, it was determined that that the mini-workspace class should inherit

from the workspace class because a mini-workspace is, at its essence, a workspace but with boundary

constraints and a Folder hook.
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Figure 4-4: A bubble is anchored but a mini-workspace is not

The goal for this first iteration of the mini-workspace is to create the framework of a mini-

workspace (Figure 4-5). The framework should look like a mini-workspace but not necessarily

accept blocks or be scrollable.

Figure 4-5: Mini-Workspace Framework

In order to this, the following functionality must be created:
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1. A mini-workspace must remember its parent Folder, its top blocks, whether it is a mini-

workspace.

2. A mini-workspace needs to be rendered and disposed.

3. A mini-workspace needs to be rendered at both the Javascript and dom levels.

4. A mini-workspace needs to be able to be repositioned and not anchored to its Folder.

5. The mini-workspace must render and dispose as the folderIcon is clicked.

By implementing these functionalities, the mini-workspace framework was created. At this point,

the mini-workspace does not accept blocks but can be moved around the main workspace and can

expand (render) or collapse (dispose) as necessary.

4.4 Adding Functionality to Folders

4.4.1 Adding and Removing Blocks

At its most basic form, adding or removing blocks can be thought of as removing the block from

the topBlocks of the old workspace and pushing it onto topBlocks of the new workspace. In order

to implement this, the exact steps needed for a block to move from one workspace to another must

be considered.

1. A block is clicked and an onMouseDown event is registered

2. The block is dragged and an onMouseDrag event is registered

3. The block is released on either a mini-workspace or a workspace and an onMouseUp event is

registered

When the onMouseUp event is registered, the location of the cursor is used to determine what

workspace the block is over. To do this, we traverse all the Folders in the workspace, which we

saved in z-index order order in Blockly.ALL FOLDERS. If the Folder is expanded, we can find the

bounding box of the mini-workspace and determine whether the cursor is within this bounding box.

Because the Folders are saved in z-index order, once the Folder is found, we need not continue

looking.

1 Blockly.folder.prototype.isOverFolder = function(e) {

2 if (this.expandedFolder_){
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3 var mouseXY = Blockly.mouseToSvg(e);

4 var folderXY = Blockly.getSvgXY_(this.miniworkspace.svgGroup_);

5 var width = this.miniworkspace.width_;

6 var height = this.miniworkspace.height_;

7 var over = (mouseXY.x > folderXY.x) &&

8 (mouseXY.x < folderXY.x + width) &&

9 (mouseXY.y > folderXY.y) &&

10 (mouseXY.y < folderXY.y + height);

11 return over;

12 } else {

13 return false;

14 }

15 };

Listing 4.1: Blockly.Block.prototype.isOverFolder determines whether the cursor is over this

Folder’s mini-workspace

1 var overFolder = null;

2 for (var i = 0; i < Blockly.ALL_FOLDERS.length; i++) {

3 if (this_ != Blockly.ALL_FOLDERS[i] &&

4 Blockly.ALL_FOLDERS[i]. isOverFolder(e)) {

5 overFolder = Blockly.ALL_FOLDERS[i];

6 break;

7 }

8 }

Listing 4.2: A segment of code that finds the Folder that the mouse is over

Once the new workspace is found, we must remove the block from the old workspace’s topBlocks

array and push it onto the new workspace’s topBlocks array. The last step needed is to rerender

the both workspaces.

1 oldWorkspace.removeTopBlock(block);

2 newWorkspace.addTopBlock(block);

At this point, blocks can be moved from one workspace to another but the block would appear

in the top right corner of the new workspace rather than where the cursor drops the block. This

behavior will change with further development and details are laid out in Adding and Removing

Blocks Part 2.
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4.4.2 Saving Blocks

With the most basic and rudimentary behavior of Folders completed, another important and

crucial aspect of Folders must be implemented - persistence of Folders and its contents between

sessions. Blocks in App Inventor projects are saved as XML in .bky files during auto-save and user

triggered saves. A close look at xml.js was necessary.

A workspace is stored in the following XML format:

<xml>

<block type="..." id="1" ...> ... </block>

<block type="..." id="2" ...> ... </block>

</xml>

In order to store Folders and their contents, I modified the XML to the following format with

Folders, where blocks with ids 4 and 5 are in the Folder’s mini-workspace.

<xml>

<block type="..." id="1" ...> ... </block>

<block type="..." id="2" ...> ... </block>

<block type="folder" id="3" >

<block type="..." id="4" ...> ... </block>

<block type="..." id="5" ...> ... </block>

</block>

</xml>

To implement this, the code for workspaceToDom and domToWorkspace must both be changed.

WorkspaceToDom was tackled first and the changes to the function are shown in lines 10-15 below:

1 Blockly.Xml.workspaceToDom = function(workspace) {

2 var width; // Not used in LTR.

3 if (Blockly.RTL) {

4 width = workspace.getMetrics ().viewWidth;

5 }

6 var xml = goog.dom.createDom(’xml’);

7 var blocks = workspace.getTopBlocks(true);

8 for (var i = 0, block; block = blocks[i]; i++) {

9 var element = Blockly.Xml.blockToDom_(block);

10 if (block.type == "folder") {

11 var folder = Blockly.Xml.workspaceToDom(block.miniworkspace);
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12 for (var x = 0, b; b = folder.childNodes[x];){

13 element.appendChild(b);

14 }

15 }

16 var xy = block.getRelativeToSurfaceXY ();

17 element.setAttribute(’x’, Blockly.RTL ? width - xy.x : xy.x);

18 element.setAttribute(’y’, xy.y);

19 xml.appendChild(element);

20 }

21 return xml;

22 };

Listing 4.3: Blockly.Xml.workspaceToDom

For domToWorkspace, a different approach was taken. Folders are rendered collapsed and

their mini-workspaces should not be rendered until expanded. Because of this, the xml of the mini-

workspaces were saved as a variable of the mini-workspace rather than rendered immediately. This

change can be seen in lines 19-25 below:

1 Blockly.Xml.domToWorkspace = function(workspace , xml) {

2 Blockly.Instrument.timer (

3 function () {

4 var width; // Not used in LTR.

5 if (Blockly.RTL) {

6 width = workspace.getMetrics ().viewWidth;

7 }

8 // The commented line below was replaced because it would reference beyond

9 // the end of the childNodes pseudo -array. In Chrome this is fine because

10 // the value returned is "undefined" which counts as false. However when

11 // using phantomjs (unit test) you wind up fetching memory garbage (!!)

12 //

13 // for (var x = 0, xmlChild; xmlChild = xml.childNodes[x]; x++) {

14 var xmlChild;

15 for (var x = 0; x < xml.childNodes.length; x++) {

16 xmlChild = xml.childNodes[x];

17 if (xmlChild.nodeName.toLowerCase () == ’block ’) {

18 var block = Blockly.Xml.domToBlock(workspace , xmlChild);

19 if (block.type == "folder") {

20 var folderXML = goog.dom.createDom(’xml’);

21 while(xmlChild.children.length > 0) {

22 folderXML.appendChild(xmlChild.children [0]);

23 }
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24 block.miniworkspace.xml = folderXML;

25 }

26 var blockX = parseInt(xmlChild.getAttribute(’x’), 10);

27 var blockY = parseInt(xmlChild.getAttribute(’y’), 10);

28 if (!isNaN(blockX) && !isNaN(blockY)) {

29 block.moveBy(Blockly.RTL ? width - blockX : blockX , blockY);

30 }

31 }

32 }

33 },

34 function (result , timeDiff) {

35 Blockly.Instrument.stats.domToWorkspaceCalls ++;

36 Blockly.Instrument.stats.domToWorkspaceTime = timeDiff;

37 }

38 );

39 };

Listing 4.4: Blockly.Xml.domToWorkspace

4.4.3 Compiling to Android

Along with saving blocks, compiling a project to an Android application is another essential aspect

of Folders. App Inventor projects are first compiled to YAIL, which is then compiled into Java VM

byte code. In order to compile correct Android applications, the proper YAIL must be generated.

In yail.js, the topBlocks of the main workspace is pulled and each of them generated into YAIL.

TopBlocks of the main workspace do not, in fact, contain all of the topBlocks but rather contains

the top blocks and Folders in the main workspace. In order to ensure that all of the topBlocks

are in fact captured, we step through the topBlocks of the main workspace iteratively. If the

current block is a Folder block, the topBlocks of its mini-workspace will be concatenated. The

implementation can be seen in lines 13-21 below:

1 Blockly.Yail.getDebuggingYail = function () {

2 var code = [];

3 var componentMap = Blockly.Component.buildComponentMap ([], [], false , false);

4

5 var globalBlocks = componentMap.globals;

6 for (var i = 0, block; block = globalBlocks[i]; i++) {

7 code.push(Blockly.Yail.blockToCode(block));

8 }

9
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10 var blocks = Blockly.mainWorkspace.getTopBlocks(true);

11 //[Shirley 3/21] post -process of topBlocks

12

13 var blocks2 = [];

14 for (var x = 0, block; block = blocks[x]; x++) {

15 if (block.category == "folders") {

16 blocks2 = blocks2.concat(block.miniworkspace.topBlocks_);

17 } else {

18 blocks2 = blocks2.concat(block);

19 }

20 }

21 blocks = blocks2;

22 //[Shirley 3/21] end

23

24 for (var x = 0, block; block = blocks[x]; x++) {

25

26 // generate Yail for each top -level language block

27 if (!block.category) {

28 continue;

29 }

30 code.push(Blockly.Yail.blockToCode(block));

31 }

32 return code.join(’\n\n’);

33 };

Listing 4.5: Blockly.Yail.getDebuggingYail

4.4.4 Scrollable Mini-Workspace

Scrollable mini-workspaces was the next detail tackled. While non-scrollable mini-workspaces could

have been an option, it did not make sense. First, the larger main workspace is scrollable. It would

be strange to have one workspace scrollable and another not. Second, mini-workspaces are meant to

give users more space to develop on. Non-scrollable mini-workspaces would limit the space available

for the user and thus defeat the purpose of Folders.

Creating scrollable workspaces involved looking at how scrollbars were created for the main

workspace and creating appropriate getWorkspaceMetrics and setWorkspaceMetrics functions. Be-

cause metrics is the gear driving the viewable window of any workspace, a lot of tweaking was

necessary before scrollable workspaces were made possible.

The implementation for getWorkspaceMetrics and setWorkspaceMetrics can be seen below:
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1 Blockly.MiniWorkspace.getWorkspaceMetrics_ = function () {

2 var svgSize = Blockly.svgSize ();

3 //the workspace is just a percentage though.

4 svgSize.width *= 0.4;

5 svgSize.height *= 0.7;

6

7 //We don’t use Blockly.Toolbox in our version of Blockly instead we use drawer.js

8 // svgSize.width -= Blockly.Toolbox.width; // Zero if no Toolbox.

9 svgSize.width -= 0; // Zero if no Toolbox.

10 var viewWidth = svgSize.width - Blockly.Scrollbar.scrollbarThickness;

11 var viewHeight = svgSize.height - Blockly.Scrollbar.scrollbarThickness;

12 try {

13 var blockBox = this.getCanvas ().getBBox ();

14 } catch (e) {

15 // Firefox has trouble with hidden elements (Bug 528969).

16 return null;

17 }

18 if (this.scrollbar_) {

19 // Add a border around the content that is at least half a screenful wide.

20 // Ensure border is wide enough that blocks can scroll over entire screen.

21 var leftEdge = Math.min(blockBox.x - viewWidth / 2,

22 blockBox.x + blockBox.width - viewWidth);

23 var rightEdge = Math.max(blockBox.x + blockBox.width + viewWidth / 2,

24 blockBox.x + viewWidth);

25 var topEdge = Math.min(blockBox.y - viewHeight / 2,

26 blockBox.y + blockBox.height - viewHeight);

27 var bottomEdge = Math.max(blockBox.y + blockBox.height + viewHeight / 2,

28 blockBox.y + viewHeight);

29 } else {

30 var leftEdge = blockBox.x;

31 var rightEdge = leftEdge + blockBox.width;

32 var topEdge = blockBox.y;

33 var bottomEdge = topEdge + blockBox.height;

34 }

35 //We don’t use Blockly.Toolbox in our version of Blockly instead we use drawer.js

36 //var absoluteLeft = Blockly.RTL ? 0 : Blockly.Toolbox.width;

37 var absoluteLeft = Blockly.RTL ? 0 : 0;

38 var metrics = {

39 viewHeight: svgSize.height ,

40 viewWidth: svgSize.width ,

41 contentHeight: bottomEdge - topEdge ,
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42 contentWidth: rightEdge - leftEdge ,

43 viewTop: -this.scrollY ,

44 viewLeft: -this.scrollX ,

45 contentTop: topEdge ,

46 contentLeft: leftEdge ,

47 absoluteTop: 0,

48 absoluteLeft: absoluteLeft

49 };

50 return metrics;

51 };

52

53 Blockly.MiniWorkspace.setWorkspaceMetrics_ = function(xyRatio) {

54 if (!this.scrollbar) {

55 throw ’Attempt to set mini workspace scroll without scrollbars.’;

56 }

57 var metrics = this.getMetrics ();// Blockly.MiniWorkspace.getWorkspaceMetrics_ ();

58 if (goog.isNumber(xyRatio.x)) {

59 this.scrollX = -metrics.contentWidth * xyRatio.x -

60 metrics.contentLeft;

61 }

62 if (goog.isNumber(xyRatio.y)) {

63 this.scrollY = -metrics.contentHeight * xyRatio.y -

64 metrics.contentTop;

65 }

66 var translation = ’translate(’ +

67 (this.scrollX + metrics.absoluteLeft) + ’,’ +

68 (this.scrollY + metrics.absoluteTop) + ’)’;

69 this.getCanvas ().setAttribute(’transform ’, translation);

70 this.getBubbleCanvas ().setAttribute(’transform ’,

71 translation);

72 };

Listing 4.6: getWorkspaceMetrics and setWorkspaceMetrics

4.4.5 Visual Feedback

As mentioned in the design of Folders, visual feedback is essential for the user in blocks pro-

gramming languages. Without visual feedback and guidance, users can become frustrated when the

exhibited behavior is not the expected behavior. In order to understand how to properly implement

the visual highlighting of Folders, the highlighting of connections was studied closely.
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The closest connection, if any, is found in the onMouseMove event handler for blocks. Using

binary search, the closest connection is found and stored. If the current highlighted connection is

not the same as the closest connection, the highlighted connection will be unhighlighted. If a closest

connection is found and not currently highlighted, the connection will be highlighted. The code for

this can been seen in Appendix G, Listing G.3, lines 72-100.

With this knowledge, the expanded Folder a block is over is found using the same methods,

though with linear search and not binary search. While binary search is very important for con-

nections because of the large number of connections that could be present on the workspace, it is

unnecessary for Folders as it is unlikely that a very large number of Folders will be expanded

on the workspace. The implementation for highlighting of mini-workspaces can be seen below:

1 Blockly.Block.prototype.onMouseMove_ = function(e) {

2 ...

3 //find the folder the block is over

4 var overFolder = null;

5 for (var i = 0; i < Blockly.ALL_FOLDERS.length; i++) {

6 if (this_ != Blockly.ALL_FOLDERS[i] &&

7 Blockly.ALL_FOLDERS[i]. isOverFolder(e)) {

8 overFolder = Blockly.ALL_FOLDERS[i];

9 break;

10 }

11 }

12 // remove highlighting if necessary

13 if (Blockly.selectedFolder_ &&

14 Blockly.selectedFolder_ != overFolder) {

15 Blockly.selectedFolder_.miniworkspace.unhighlight_ ();

16 Blockly.selectedFolder_ = null;

17 }

18 //add highlighting if necessary

19 if (overFolder && overFolder != Blockly.selectedFolder_) {

20 Blockly.selectedFolder_ = overFolder;

21 Blockly.selectedFolder_.miniworkspace.highlight_ ();

22 }

23 ...

24 };

Listing 4.7: Blockly.Block.prototype.onMouseMove
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4.4.6 Adding and Removing Blocks Part 2

Having cleaned up the implementation of mini-workspaces and gained more knowledge about svg

workspaces, a second iteration of adding and removing blocks was necessary. The following insights

and solutions were made to implement the second iteration of moving a block from one workspace

to another:

1. Blocks can only belong to one workspace. This first presented itself as a bug. A block inside

a mini-workspace can be dragged around, but once the block is dragged over a border, it

disappears. This is because the block is still in the mini-workspace and the mini-workspace

extends past its visible border but is not viewable.

Solution: A block’s onMouseDown action will move the block to the main workspace. This

will allow the block to be visible when dragged at all times.

2. Blocks exist on two separate but linked layers: dom and Javascript. A block’s properties is

stored as Javascript and this Javascript is used to generate the dom object. However, the dom

can be manipulated easier and faster outside of Javascript.

Insight: When a block is moved from one workspace to another, the dom of the block will

be surgically moved in the dom. The Javascript properties of the block will be changed

appropriately.

3. Blocks are not autonomous; they have parents and children. When blocks switch workspaces,

their children must as well.

Solution: By surgically moving the dom of a block, the children will be moved as well. On the

Javascript side, the workspace of the block and its children will be changed recursively.

4. The block’s new workspace is already stored. The implementation done with mini-workspace

highlighting stored the highlighted mini-workspace in a global variable Blockly.selectedFolder .

This will considerably simplify the process of determining the new workspace.

Insight: If the selected Folder is null, nothing needs to be done. The block is already in

the main workspace. If the selected Folder is not null, the block needs to be moved to the

selected Folder’s mini-workspace.

5. The relationship of coordinates of a mini-workspace and the main workspace is related to the

transform of the mini-workspace as well as the metrics, or scrolling transform, of the mini-

workspace.
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Insight: The relationship of the coordinates is shown in Figure 4-6.

Because this transform is needed for connections, as discussed in the next section, the implemen-

tation details will be revealed at the end of the connections discussion.

Figure 4-6: Relative coordinates of the main workspace and a mini-workspace

4.4.7 Connections

The last detail of Folders tackled was connections. When a block is moved from mini-workspace

to mini-workspace, its connections must also move. ConnectionDBLists are maintained for each

workspace and their structure allows for easy binary search of viable connections, which directly

leads to the possibility of highlighting connections.

There are 4 different types of connections: 1) value input, 2) value output, 3) statement previous,

4) statement next. The connectionDBList is a length 4 list, starting at index 1, with the each index

referring the aforementioned type of connection.

Figure 4-7: 4 different types of connections

At each of these indices, the list of connections are ordered first by y coordinate, then x coordinate.
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A few careful steps must be taken to migrate connections from one workspace to another prop-

erly. First, every connection must be accounted for. Every connection on the top-most block and

each of these connection’s targetConnections must be migrated. This process must then be recur-

sively repeated for every child block. Second, the x and y coordinate of each connection must be

adjusted accordingly. The dx and dy are the same as the dx and dy of the previous section. This

adjustment must also be done in a specific order: 1) the connection must first be removed from

the old connectionDBList, 2) the x and y should be adjusted, 3) the connection is added to the

new connectionDBList, and 4) the connection’s dbList must be changed to the new workspace’s

connectionDBList.

The implementation for moving a block from the main workspace to the mini-workspace is as

follows:

1 Blockly.Workspace.prototype.moveIntoFolder = function (block) {

2 // The oldWorkspace will always be the mainWorkspace

3 var oldWorkspace = Blockly.mainWorkspace;

4 // newWorkspace will always be this

5 var newWorkspace = this;

6

7 // Move the Block into the right place in the \folder

8 var blockRelativeToMWXY = block.getRelativeToSurfaceXY ();

9 var miniWorkspaceOrigin = Blockly.getRelativeXY_(this.svgGroup_);

10 Blockly.mainWorkspace.removeTopBlock(block);

11 this.addTopBlock(block);

12 // surgically removes all svg associated with block from old workspace canvas

13 var svgGroup = goog.dom.removeNode(block.svg_.svgGroup_);

14 block.workspace = this;

15 this.getCanvas ().appendChild(svgGroup);

16

17 var translate_ = this.getTranslate ();

18 var dx = -1 * (miniWorkspaceOrigin.x + parseInt(translate_ [0]));

19 var dy = -1 * (miniWorkspaceOrigin.y + parseInt(translate_ [1]));

20 var x = blockRelativeToMWXY.x + dx;

21 var y = blockRelativeToMWXY.y + dy;

22 block.svg_.getRootElement ().setAttribute(’transform ’,

23 ’translate(’ + x + ’, ’ + y + ’)’);

24

25 // remove , change x & y, add

26 if (block.outputConnection) {

27 changeConnection(block.outputConnection);
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28 }

29 if (block.nextConnection) {

30 changeConnection(block.nextConnection);

31 }

32 if (block.previousConnection) {

33 changeConnection(block.previousConnection);

34 }

35 if (block.inputList) {

36 for (var i = 0; i < block.inputList.length; i++) {

37 var c = block.inputList[i];

38 if (c.connection) {

39 changeConnection(c.connection);

40 }

41 }

42 }

43

44 function changeConnection (connect) {

45 oldWorkspace.connectionDBList[connect.type]. removeConnection_(connect);

46 connect.x_ += dx;

47 connect.y_ += dy;

48 newWorkspace.connectionDBList[connect.type]. addConnection_(connect);

49 if (connect.targetConnection) {

50 var tconnect = connect.targetConnection;

51 oldWorkspace.connectionDBList[tconnect.type]. removeConnection_(tconnect);

52 tconnect.x_ += dx;

53 tconnect.y_ += dy;

54 newWorkspace.connectionDBList[tconnect.type]. addConnection_(tconnect);

55 tconnect.dbList_ = newWorkspace.connectionDBList;

56 }

57 connect.dbList_ = newWorkspace.connectionDBList;

58 }

59

60 };

Listing 4.8: Blockly.Workspace.prototype.moveIntoFolder

The implementation for moving a block from a mini-workspace to the main workspace is as

follows:

1 Blockly.Workspace.prototype.moveOutOfFolder = function (block) {

2 // this is used everytime a block is clicked - if it’s in main , don’t move it

3 if (block.workspace == Blockly.mainWorkspace) {
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4 return;

5 }

6

7 //Move block into the right place in the main workspace

8 var oldWorkspace = block.workspace;

9 var newWorkspace = this;

10 var blockRelativeToWXY = block.getRelativeToSurfaceXY ();

11 var miniWorkspaceOrigin = Blockly.getRelativeXY_(oldWorkspace.svgGroup_);

12 oldWorkspace.removeTopBlock(block);

13 newWorkspace.addTopBlock(block);

14 // surgically removes all svg associated with block from old workspace canvas

15 var svgGroup = goog.dom.removeNode(block.svg_.svgGroup_);

16 block.workspace = newWorkspace;

17 newWorkspace.getCanvas ().appendChild(svgGroup);

18

19 var translate_ = oldWorkspace.getTranslate ();

20 var dx = miniWorkspaceOrigin.x + parseInt(translate_ [0]);

21 var dy = miniWorkspaceOrigin.y + parseInt(translate_ [1]);

22 var x = blockRelativeToWXY.x + dx;

23 var y = blockRelativeToWXY.y + dy;

24 block.svg_.getRootElement ().setAttribute(’transform ’,

25 ’translate(’ + x + ’, ’ + y + ’)’);

26 block.isInFolder = false;

27

28 // Change the old workspace and new workspace ’s connectionDBList

29 if (block.outputConnection) {

30 changeConnection(block.outputConnection);

31 }

32 if (block.nextConnection) {

33 changeConnection(block.nextConnection);

34 }

35 if (block.previousConnection) {

36 changeConnection(block.previousConnection);

37 }

38 if (block.inputList) {

39 for (var i = 0; i < block.inputList.length; i++) {

40 var c = block.inputList[i];

41 if (c.connection) {

42 changeConnection(c.connection);

43 }

44 }
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45 }

46

47 function changeConnection (connect) {

48 oldWorkspace.connectionDBList[connect.type]. removeConnection_(connect);

49 connect.x_ += dx;

50 connect.y_ += dy;

51 newWorkspace.connectionDBList[connect.type]. addConnection_(connect);

52 if (connect.targetConnection) {

53 var tconnect = connect.targetConnection;

54 oldWorkspace.connectionDBList[tconnect.type]. removeConnection_(tconnect);

55 tconnect.x_ += dx;

56 tconnect.y_ += dy;

57 newWorkspace.connectionDBList[tconnect.type]. addConnection_(tconnect);

58 tconnect.dbList_ = newWorkspace.connectionDBList;

59 }

60 connect.dbList_ = newWorkspace.connectionDBList;

61 }

62

63 newWorkspace.moveChild(block);

64

65 return [dx,dy];

66

67 };

Listing 4.9: Blockly.Workspace.prototype.moveOutOfFolder
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Chapter 5

Evaluation Methods

Folders were designed and implemented to improve the user experience and interface of App

Inventor. In order to evaluate whether those goals were met, user studies must be conducted for

Folders.

5.1 Initial Feedback

Upon the release of the first minimal viable product iteration of Folders, some informal testing

and studies were completed. The Folder system was tested by App Inventor developers and the

initial feedback was generally positive. During this alpha testing period, a number of bugs were

discovered and a series of features were requested for future iterations of Folders.

Folders is considered to be an essential feature for App Inventor by all testers and a second

iteration is greatly anticipated. Comparisons between Folders and blocks organization tools in

other blocks languages, such as Gameblox, were made. There was some discussion on the merits of

having an index displaying the tree structure of Folders in the blocks palette. The user interface

of Folders also appeared to give several users trouble and is not as intuitive as expected.

5.2 Goals for User Study

With the feedback from the initial testing and studies, a set of goals can be set for a formal user

study. The formal user study will be used to both gather data on the current iteration of Folders

and establish the next steps for future iterations of Folders. Because Folders is an improvement

on App Inventor, this study will be conducted on a voluntary sample of users already familiar with
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the layout, functionality, and features of App Inventor. Pending the results from this proposed

study, a second study with new App Inventor users as subjects may be designed and carried out.

Phase one of the study will focus on the current iteration of Folders and its goals include

determining whether the design is intuitive and whether the implementation exhibits the expected

behavior. Phase two of the study aims at determining what additional features should be imple-

mented for Folders and how essential do users consider these additional features.

5.3 Design of User Study

In order to achieves these goals, a mixture of survey and short-term longitudinal A/B testing will

be conducted. The flow of the study will be as follows:

1. Users will be asked to complete a survey examining the expected behavior of Folders.

2. Users will be given a task to complete in live App Inventor. Development screens will be

captured by screencast.

3. Users will be asked to evaluate the difficulty of the task in a second survey.

4. After two weeks, users will be asked to return and complete a similar task with one of many

variations of Folders. Each variation will include or exclude a certain feature. Again, the

development screens will be captured by screencast.

5. Users will be asked to evaluate the difficulty of the task and whether they found it more

challenging or less challenging.

Questions I hope to answer with this user study include:

1. Are App Inventor programmers able to understand and use Folders without any guidance?

2. How necessary of a feature do App Inventor programmers consider Folders?

3. What behaviors, if any, of Folders is unexpected?

4. What features are still missing from Folders and how important are they?

5.3.1 Survey One

Question: Are the designs for Folders intuitive? Does Folders exhibit expected behavior?

This first survey will consistent of a series of scenario questions such as the following:
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1. A user drags a boolean block within the expected connection radius of a block but also above

an expanded Folder. What is the expected behavior?

a. The boolean block makes the connection.

b. The boolean block is put inside the Folder.

c. Other - please elaborate.

Each of these scenario questions will be targeted at answering a specific expected behavior

question and aims at better understanding what users expect from a feature such as Folders.

5.3.2 Control Behavior

In order to measure whether Folders is a useful tool, a control sample must be collected and

compared to the treatment sample. Each user’s development screen will be captured using a screen-

cast tool. Each user will be given an App Inventor project file, with a completed design for the app
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they will build.

The task given to users will be:

Using the given AddCalculator.aia project file, create a completed Add Calculator. The Add

Calculator should:

• Display the entered integers correctly

• Add two or more integers together accurately

• Behave as a normal calculator’s addition functionality would

A physical calculator is available for behavior comparison purposes.

5.3.3 Exit Survey One

After completing the AddCalculator App, users will be given an open-ended exit survey consisting

of the following questions:

74



1. How difficult did you find the AddCalculator app?

2. What would have aided you in development of the app?

3. What tools or user interface suggestions do you have for App Inventor?

5.3.4 Treatment Behavior

After two weeks, users will be asked to return and complete a second part of the study. In this

study, users will be given a similar task but will be asked to use the current Folder version or a

variation of the current Folder build of App Inventor. Variations can include:

• Blocks cannot be connected in the mini-workspace.

• Connection is prioritized over moving block into mini-workspace.

• No visual feedback through highlighting of the mini-workspace.

• A tree structure index of Folders available to users in the Palette

• Naming available for Folders

• Mini-workspace expands some distance from the Folder pseudo-block

Before users are given the task, they will asked to rate on a scale of 1-5 how well they remember

the task assigned to them two weeks prior. This will help assess the steps users took to complete

this second task.

The task given to users will be:

Using the given MultiplyCalculator.aia project file, create a completed Multiply Calculator. The

Multiply Calculator should:

• Display the entered integers correctly

• Multiply two or more integers together accurately

• Behave as a normal calculator’s multiplication functionality would

A physical calculator is available for behavior comparison purposes.
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5.3.5 Exit Survey Two

Once users finish the Multiply Calculator app, a second open-ended exit survey will be given to

users. Questions on the survey will include:

1. How difficult was developing Multiple Calculator?

2. Did Folders help you during development? How?

3. Did you run into any bugs or unexpected behavior while using Folders?

4. Would you recommend the usage of Folders to other App Inventor developers? Why or why

not?

5.3.6 Analysis of User Study

Upon completion of the user study, both the collected surveys and recorded screen-casts will be care-

fully reviewed and documented. The surveys will provide insight into how a user perceives Folders
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and their thought process during development. The screen-casts will yield better understanding of

the development process of a user and how they utilized, or did not utilize, Folders in their tasks.

By combining the results of the surveys and screen-casts, a clearer picture of the usefulness and

demand of tool like Folders will be presented.
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Chapter 6

Conclusion and Future Work

6.1 Current State

In its current state, Folders work as a first iteration, minimal working product of a visual or-

ganization system for App Inventor. A Folder instance can be easily added to or deleted from

the workspace. The mini-workspace associated with a Folder can expand and collapse its mini-

workspaces. Blocks and other Folders can be added or removed from mini-workspaces. Blocks

can be moved between workspaces and make connections in one action. There is visual feedback for

the user as blocks are moved from one workspace to another to indicate which workspace the block

is in. The design and behavior of Folders and mini-workspaces intentionally mimic the folders of

a Desktop.

Some informal testing and studies have been conducted on this minimal viable product and their

results will be driving future work and formal user studies for Folders.

6.2 Future Work

Future work will be discussed in 4 sections. First, the known bugs of Folders will be presented

in a most severe to least severe fashion. These bugs were made known through the informal user

testing and studies. Second, features for immediate development will be presented. These features

are essential to Folders and must be implemented before Folders can be integrated into the

production App Inventor system. Third, user studies and features for development the foreseeable

future will be suggested. Each of these ideas require further brainstorming, development, and,

ultimately, implementation. The implementation of any of these ideas will benefit Folders greatly.
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Lastly, work for the distant future will be discussed. These ideas will be very important for Folders

but also App Inventor.

6.2.1 Known Bugs

The current version of Folders has a number of bugs that need to be fixed before it can be

introduced to the general App Inventor users. Below is a list of bugs, each of which has been given

a rating from 1 to 4 with each rating corresponding to the following:

1. Critical Bug: breaks App Inventor; Folders cannot be pushed live until fixed

2. Major Bug: breaks Folders; does not break App Inventor; Folders cannot be integrated

until fixed

3. Minor Bug: does not break App Inventor; exhibits unexpected behavior

4. Cosmetic Bug: does not break App Inventor; suboptimal user interface

6.2.1.1 Collapsed Blocks

Bug Rating: 1) Critical Bug

Collapsed blocks cannot be added to Folders at the moment. When a user tries to add a

collapsed blocks to a Folder, a “Uncaught Connection not in database” is thrown. App Inventor will

not exhibit any immediate problems but this will cascade into a number of other errors, ultimately

leading to the loss of the original collapsed block.

Figure 6-1: Attempting to add a collapsed block will throw “Uncaught Connection not in database”

error
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Collapsing a block inside a mini-workspace will result in the same error being thrown; however,

App Inventor will immediately display incorrect behavior. A forced refresh of App Inventor will be

necessary and the original block will be lost.

Figure 6-2: Attempting to collapse a block in a mini-workspace will throw “Uncaught Connection

not in database” error

6.2.1.2 Nested Folders

Bug Rating: 2) Major Bug

If nested Folders are both expanded and the outer Folder is collapsed, the inner Folder

cannot be collapsed.
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Figure 6-3: Inner nested mini-workspace cannot be collapsed

6.2.1.3 Variables & Procedures Not Recognized

Bug Rating: 2) Major Bug

Global variables and procedures inside Folders are not recognized and will not be listed in

Procedure and Variable drawers.

Figure 6-4: Variables and procedures inside mini-workspaces are not recognized in the main

workspace

Suggested Fix: edit workspace’s getAllBlocks procedure. GetAllBlocks does not include blocks

inside mini-workspaces. Alternatively, change procedure and variable’s usage of getAllBlocks to
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include traversing all mini-workspaces as well.

6.2.1.4 Warnings Do Not Toggle

Bug Rating: 3) Minor Bug

Warnings and errors do not toggle inside a mini-workspace.

Figure 6-5: Warnings do not toggle for blocks inside mini-workspace

Suggested Fix: the block is no longer connected to the correct event; edit block events as part

of workspace’s moveIntoFolder and moveOutOfFolder methods.

6.2.1.5 Mutator Bubbles

Bug Rating: 3) Minor Bug

Mutator bubbles do not appear in the correct position when opened inside a mini-workspace.
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Figure 6-6: Opening a mutator bubble inside a mini-workspace results in unexpected behavior

6.2.1.6 Mutator Does Not Change Workspaces

Bug Rating: 3) Minor Bug

When a block with an expanded mutator is added to a mini-workspace, the mutator bubble

remains in the main workspace.
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Figure 6-7: Mutator bubbles fail to migrate to the new workspace of the block

6.2.1.7 Folders Has Warning

Bug Rating: 3) Minor Bug

Folders should not display “This block should be connected to an event block or a procedure

definition” warning.

Figure 6-8: Folders display warnings inappropriately
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6.2.2 Immediate Future

There is a significant amount of work that needs to be done before Folders can be integrated into

the production version of App Inventor. Some of this work has been mentioned in the Bugs List. A

few features were requested in the early stage informal testing of Folders that require immediate

attention and development.

6.2.2.1 Naming

Currently, Folders are named “Folder[block id]” (e.g. folder1, folder10, etc). The block id

number changes with each rendering of a block, which is a feature inherent to Blockly. This misleads

users into thinking that a new rendering of a specific Folder is a brand new Folder, which is not

the case.

A feature that has been requested and expected by a number of different users is the ability to

name Folders. By implementing a naming feature, users can name Folders with useful terms

allowing for better navigation.

Implementation suggestion: create a new right-click drop down menu option for “Rename [Folder

name]”. Alternatively, change the Folder pseudo-block to include a text input.

6.2.2.2 Warning Before Deletion

Folders can be deleted without warning or confirmation. This is not ideal as Folders have the

capacity to contain numerous crucial procedures and other blocks. Because App Inventor does not

currently have an undo feature, deletion of a large number of blocks is not recoverable.

Implementation suggestion: a feature similar to that of deleting a large collection of blocks should

be implemented for deleting a Folder with content.
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Figure 6-9: Warning before deleting a block

6.2.2.3 Mini-workspace Expansion Anchor

Currently, a mini-workspace’s expansion anchor is the upper-left corner of the Folder’s icon. This

is suboptimal as the [–] icon would covered and the way to collapse the mini-workspace is not

immediately clear.

Figure 6-10: Mini-workspace expands on top of Folder pseudo-block

Implementation suggestion: the mini-workspace should expand some small distance away from

the Folder pseudo-block such as in Figure 6-11.
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Figure 6-11: A better expansion of the mini-workspace

6.2.3 Foreseeable Future

6.2.3.1 User Studies

Informal testing has been conducted for the current minimal viable product version of Folders.

After critical bugs and features have been implemented for Folders, I would like to see user studies

conducted. A proposed user study has been described in Section 5.3 Design for User Study and its

goals in Section 5.2 Goals for User Study.

6.2.3.2 Folders Duplication

Users may find the need to duplicate Folders and its contents. Currently, duplicating a Folder

will only create a new instance, without any of the original Folder’s contents. Duplication of

Folders is an important feature because of its potential for users. For example, a Folder could

contain the template for a series of blocks. By replicating the template Folder, users would not

need to recreate these blocks one at a one.

6.2.3.3 Cumulative Error Display

Because Folders hide away blocks for the user, it will be difficult for users to find where blocks

with warnings or errors reside. By displaying a cumulative number of errors and warnings on blocks

inside a Folder on the Folder pseudo-block, users will be given some direction in which to search

for the offending block.
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6.2.3.4 Recursive Disabling

For testing purposes, users may want to disable a series of blocks. If disabling a Folder indicates

disabling all of the blocks nested inside the Folder, a user would not need to disable each block

separately. This feature, although reasonable sounding, may not be the expected behavior and is

pending user studies to determine its usability.

6.2.3.5 Resizable Mini-Workspace

One of the problems that led to the creation of Folders is the limited visible region of the main

workspace. Constraining the viewable window of the mini-workspace defeats the purpose of giving

the user more visible regions. Resizable mini-workspaces would also allow for easier development

inside a Folder.

6.2.3.6 Collapse Button on Mini-Workspace

Because mini-workspaces are not anchored on its corresponding Folder pseudo-block, users may

find it difficult identifying the correct Folder pseudo-block. If Folders are nested and collapsed,

the problem is only exacerbated. By giving users the option to collapse the mini-workspace on the

mini-workspace itself, searching for the mini-workspace’s Folder would not become a problem.

Additionally, this would better mimic the behavior of Folders on the Desktop.

Figure 6-12: Design: collapse block button available on the border of mini-workspaces

88



6.2.3.7 Keyboard Controls

Using ctrl-c and ctrl-v to copy and paste is not available for blocks inside mini-workspaces. Because

these options are available for blocks in the main workspace, it would be a disconnect in the user

interface to have these options missing inside a mini-workspace. There are two options for where a

pasted block should appear - inside the same Folder as the original block or in the main workspace.

The better option may come as the result of a user study.

6.2.3.8 Folders Pseudo-Block Shortcut For Moving Blocks

On a desktop, files and other Folders can be added to a Folder by dragging it over the Folder

icon. This behavior is not replicated in Folders for App Inventor but should be considered for future

iterations of Folders . One of the considerations for implementing this feature is the positioning

of the new block or Folder and whether the new block or Folder should be allowed to overlap

existing blocks or Folders .

Figure 6-13: On the desktop, Folders and files can be added by dragging it over the Folder icon

6.2.3.9 Folders Properties

Folders are an excellent way for users to hide blocks away; however, it would take some effort for

users to find specific blocks especially if there are a non-trivial number of Folders in the workspace.

Folders properties could go a long way in this search. The properties could show what components

are used in each Folder , how many blocks are in each Folder , a mini-map of the Folder ’s

mini-workspace, or a combination of these and more.

6.2.3.10 Right-Click Organization and Arrangement Tools For Mini-Workspace

Mini-workspaces should have the same workspace organization and arrangement tools as the main

workspace (Figure 6-14). Any functionality available for the main workspace should be made
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available for a mini-workspace.

Figure 6-14: Workspace organization and arrangement tools for the main workspace

6.2.4 Distant Future

With the development of Folders , a number of usages beyond the simple visual organization of

blocks presents itself. Each of these usages can benefit blocks programming as a whole, especially

with blocks programming as a teaching tool.

6.2.4.1 Abstraction Tool

Folders as an abstraction tool is an expected direction for the organization tool to develop. Fold-

ers, in some ways, already feel like an abstracted function. If the mechanism could accept parameters

and in turn create different meanings for blocks nested inside the Folder, that would open up a

whole new way of development in App Inventor. As a teaching tool, App Inventor can teach stu-

dents abstraction explicitly rather than implicitly with the idea that each block represents a code

fragment.

6.2.4.2 Sharing Mechanism

Similar to Folders as an abstraction tool, Folders as a sharing mechanism is another expected

direction for the tool to take. Folders, with additional development, can be used to share between

screens, projects, and users.

6.2.4.3 Blocks Programming Coding Standards

With any textual language, there are a series of coding conventions, style guides, and best practices.

For example, Javascript indentation is generally 2 spaces, variables are declared at the top of func-

tions, and explicit scope should always be used. Unfortunately, blocks programming languages do

90



not come with coding conventions, style guides, or best practices. This causes blocks code to vary

greatly from project to project and user to user. This, in turn, causes navigating another user’s code

very difficult. With the introduction of Folders and its clear, explicit, user-preference driven way

of organizing blocks, coding standards can be established for App Inventor. Because App Inventor

is a teaching tool, students can also be introduced to the idea of coding standards at an early stage.
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Appendix A

Folders.js

1 ’use strict ’;

2

3 goog.provide(’Blockly.Blocks.folder ’);

4

5 Blockly.Blocks[’folder ’] = {

6 category: "Folders",

7 init: function () {

8 this.setColour(Blockly.FOLDER_CATEGORY_HUE);

9 this.appendDummyInput ()

10 .appendField("folder"+this.id);

11 //.appendField(new Blockly.FieldTextBlockInput(’FOLDER NAME ’), ’TEXT ’);

12 //this.setMutator(new Blockly.Mutator([’ procedures_mutatorarg ’]));

13 this.setFolderIcon(new Blockly.FolderIcon ());

14 },

15 decompose: function(workspace){

16 return Blockly.decompose(workspace ,’folder ’,this);

17 },

18 compose: Blockly.compose ,

19 typeblock: [{ translatedName: Blockly.Msg.LANG_FOLDERS_FOLDER }]

20 };

Listing A.1: appinventor/blocklyeditor/src/blocks/folders.js
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Appendix B

Folder.js

1 ’use strict ’;

2

3 goog.provide(’Blockly.Folder ’);

4

5 goog.require(’Blockly.Instrument ’); // lyn’s instrumentation code

6 goog.require(’Blockly.FolderSvg ’);

7 goog.require(’Blockly.Blocks ’);

8 goog.require(’Blockly.Comment ’);

9 goog.require(’Blockly.Connection ’);

10 goog.require(’Blockly.ContextMenu ’);

11 goog.require(’Blockly.ErrorIcon ’);

12 goog.require(’Blockly.Input ’);

13 goog.require(’Blockly.Msg’);

14 goog.require(’Blockly.Mutator ’);

15 goog.require(’Blockly.Warning ’);

16 goog.require(’Blockly.WarningHandler ’);

17 goog.require(’Blockly.Workspace ’);

18 goog.require(’Blockly.Xml’);

19 goog.require(’goog.Timer’);

20 goog.require(’goog.array’);

21 goog.require(’goog.asserts ’);

22 goog.require(’goog.string ’);

23 goog.require(’Blockly.Block ’);

24

25 Blockly.FOLDER_CATEGORY_HUE = [241, 213, 146];

26

27 Blockly.ALL_FOLDERS = [];
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28

29 Blockly.Folder = function () {

30 // We assert this here because there may be users of the previous form of

31 // this constructor , which took arguments.

32 goog.asserts.assert(arguments.length == 0,

33 ’Please use Blockly.Folder.obtain.’);

34 };

35

36 goog.inherits(Blockly.Folder ,Blockly.Block);

37

38 Blockly.Folder.obtain = function(workspace , prototypeName) {

39 if (Blockly.Realtime.isEnabled ()) {

40 return Blockly.Realtime.obtainBlock(workspace , prototypeName);

41 } else {

42 var newFolder = new Blockly.Folder ();

43 newFolder.initialize(workspace , prototypeName);

44 return newFolder;

45 }

46 };

47

48 Blockly.Folder.prototype.initialize = function(workspace , prototypeName) {

49 this.id = Blockly.genUid ();

50 workspace.addTopBlock(this);

51 if (! workspace.isFlyout) {

52 Blockly.ALL_FOLDERS.push(this);

53 }

54 this.fill(workspace , prototypeName);

55 // Bind an onchange function , if it exists.

56 if (goog.isFunction(this.onchange)) {

57 Blockly.bindEvent_(workspace.getCanvas (), ’blocklyWorkspaceChange ’, this ,

58 this.onchange);

59 }

60 };

61

62 Blockly.Folder.prototype.fill = function(workspace , prototypeName) {

63 this.outputConnection = null;

64 this.nextConnection = null;

65 this.previousConnection = null;

66 this.inputList = [];

67 this.inputsInline = false;

68 this.rendered = false;
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69 this.disabled = false;

70 this.tooltip = ’’;

71 this.contextMenu = true;

72

73 this.parentBlock_ = null;

74 this.childBlocks_ = [];

75 this.deletable_ = true;

76 this.movable_ = true;

77 this.editable_ = true;

78 this.collapsed_ = false;

79

80 this.miniworkspace = new Blockly.MiniWorkspace(this ,

81 Blockly.MiniWorkspace.getWorkspaceMetrics_ ,

82 Blockly.MiniWorkspace.setWorkspaceMetrics_);

83 this.expandedFolder_ = false;

84 this.workspace = workspace;

85 this.isInFlyout = workspace.isFlyout;

86 // This is missing from our latest version

87 // workspace.addTopBlock(this);

88

89 // Copy the type -specific functions and data from the prototype.

90 if (prototypeName) {

91 this.type = prototypeName;

92 var prototype = Blockly.Blocks[prototypeName ];

93 goog.asserts.assertObject(prototype ,

94 ’Error: "%s" is an unknown language block.’, prototypeName);

95 goog.mixin(this , prototype);

96 }

97 // Call an initialization function , if it exists.

98 if (goog.isFunction(this.init)) {

99 this.init();

100 }

101 // Bind an onchange function , if it exists.

102 if ((! this.isInFlyout) && goog.isFunction(this.onchange)) {

103 Blockly.bindEvent_(workspace.getCanvas (), ’blocklyWorkspaceChange ’, this ,

104 this.onchange);

105 }

106 };

107

108 Blockly.Folder.prototype.getIcons = function () {

109 var icons = [];
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110 if (this.mutator) {

111 icons.push(this.mutator);

112 }

113 if (this.comment) {

114 icons.push(this.comment);

115 }

116 if (this.warning) {

117 icons.push(this.warning);

118 }

119 if (this.errorIcon) {

120 icons.push(this.errorIcon);

121 }

122 if (this.folderIcon) {

123 icons.push(this.folderIcon);

124 }

125 return icons;

126 };

127

128 Blockly.Folder.prototype.initSvg = function () {

129 this.svg_ = new Blockly.FolderSvg(this);

130 this.svg_.init();

131 if (! Blockly.readOnly) {

132 Blockly.bindEvent_(this.svg_.getRootElement (), ’mousedown ’, this ,

133 this.onMouseDown_);

134 }

135 this.workspace.getCanvas ().appendChild(this.svg_.getRootElement ());

136 };

137

138 Blockly.Folder.terminateDrag_ = function () {

139 if (Blockly.Folder.onMouseUpWrapper_) {

140 Blockly.unbindEvent_(Blockly.Folder.onMouseUpWrapper_);

141 Blockly.Folder.onMouseUpWrapper_ = null;

142 }

143 if (Blockly.Folder.onMouseMoveWrapper_) {

144 Blockly.unbindEvent_(Blockly.Folder.onMouseMoveWrapper_);

145 Blockly.Folder.onMouseMoveWrapper_ = null;

146 }

147 var selected = Blockly.selected;

148 if (Blockly.Folder.dragMode_ == 2) {

149 console.log("terminate");

150 // Terminate a drag operation.
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151 if (selected) {

152 // Update the connection locations.

153 var xy = selected.getRelativeToSurfaceXY ();

154 var dx = xy.x - selected.startDragX;

155 var dy = xy.y - selected.startDragY;

156 selected.moveConnections_(dx , dy);

157 delete selected.draggedBubbles_;

158 selected.setDragging_(false);

159 selected.render ();

160 goog.Timer.callOnce(

161 selected.bumpNeighbours_ , Blockly.BUMP_DELAY , selected);

162 // Fire an event to allow scrollbars to resize.

163 Blockly.fireUiEvent(window , ’resize ’);

164 }

165 }

166 if (selected) {

167 selected.workspace.fireChangeEvent ();

168 }

169 Blockly.Folder.dragMode_ = 0;

170 };

171

172 Blockly.Folder.prototype.removeFromAllFolders = function(folder) {

173 var found = false;

174

175 var index = this.indexOfFolder ();

176 if (index != -1){

177 Blockly.ALL_FOLDERS.splice(index ,1);

178 found = true;

179 }

180 if (!found) {

181 throw ’Folder not present in ALL_FOLDERS.’;

182 }

183 };

184

185 Blockly.Folder.prototype.indexOfFolder = function () {

186 for (var f, x = 0; f = Blockly.ALL_FOLDERS[x]; x++) {

187 if (f == this) {

188 return x;

189 }

190 }

191 return -1;
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192 };

193

194 Blockly.Folder.prototype.setFolderIcon = function(folderIcon) {

195 if (this.folderIcon && this.folderIcon !== folderIcon) {

196 this.folderIcon.dispose ();

197 }

198 if (folderIcon) {

199 folderIcon.block_ = this;

200 this.folderIcon = folderIcon;

201 if (this.svg_) {

202 folderIcon.createIcon ();

203 }

204 }

205 };

206

207 Blockly.Folder.prototype.isOverFolder = function(e) {

208 if (this.expandedFolder_){

209 var mouseXY = Blockly.mouseToSvg(e);

210 var folderXY = Blockly.getSvgXY_(this.miniworkspace.svgGroup_);

211 var width = this.miniworkspace.width_;

212 var height = this.miniworkspace.height_;

213 var over = (mouseXY.x > folderXY.x) &&

214 (mouseXY.x < folderXY.x + width) &&

215 (mouseXY.y > folderXY.y) &&

216 (mouseXY.y < folderXY.y + height);

217 return over;

218 } else {

219 return false;

220 }

221 };

222

223 Blockly.Folder.prototype.promote = function () {

224 var index = this.indexOfFolder ();

225 var found = false;

226 if (index != -1){

227 found = true;

228 Blockly.ALL_FOLDERS.splice(0, 0, Blockly.ALL_FOLDERS.splice(index , 1)[0]);

229 }

230

231 if (!found) {

232 throw ’Folder not present in ALL_FOLDERS.’;
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233 }

234 };

Listing B.1: appinventor/blocklyeditor/src/folder.js
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Appendix C

Folder svg.js

1 ’use strict ’;

2

3 goog.provide(’Blockly.FolderSvg ’);

4

5 goog.require(’Blockly.Instrument ’); // lyn’s instrumentation code

6 goog.require(’goog.userAgent ’);

7 goog.require(’Blockly.BlockSvg ’);

8

9 Blockly.FolderSvg = function(folder) {

10 this.block_ = folder;

11 // Create core elements for the block.

12 this.svgGroup_ = Blockly.createSvgElement(’g’, {}, null);

13 this.svgPathDark_ = Blockly.createSvgElement(’path’,

14 {’class’: ’blocklyPathDark ’, ’transform ’: ’translate (1, 1)’},

15 this.svgGroup_);

16 this.svgPath_ = Blockly.createSvgElement(’path’, {’class ’: ’blocklyPath ’},

17 this.svgGroup_);

18 this.svgPathLight_ = Blockly.createSvgElement(’path’,

19 {’class’: ’blocklyPathLight ’}, this.svgGroup_);

20 this.svgPath_.tooltip = this.block_;

21 Blockly.Tooltip.bindMouseEvents(this.svgPath_);

22 this.updateMovable ();

23 };

24

25 goog.inherits(Blockly.FolderSvg ,Blockly.BlockSvg);

26

27 Blockly.FolderSvg.prototype.init = function () {
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28 var folder = this.block_;

29 this.updateColour ();

30 for (var x = 0, input; input = folder.inputList[x]; x++) {

31 input.init();

32 }

33 if (folder.mutator) {

34 folder.mutator.createIcon ();

35 }

36 if (folder.folderIcon) {

37 folder.folderIcon.createIcon ();

38 }

39 };

Listing C.1: appinventor/blocklyeditor/src/folder svg.js
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Appendix D

FolderIcon.js

1

2 ’use strict ’;

3

4 goog.provide(’Blockly.FolderIcon ’);

5 goog.require(’Blockly.Folder ’);

6 goog.require(’Blockly.MiniWorkspace ’);

7

8 Blockly.FolderIcon = function () {

9 this.block_ = this;

10 this.visible = false;

11 };

12

13 Blockly.FolderIcon.prototype.createIcon = function () {

14 this.iconGroup_ = Blockly.createSvgElement(’g’, {}, null);

15 this.block_.getSvgRoot ().appendChild(this.iconGroup_);

16 Blockly.bindEvent_(this.iconGroup_ , ’mouseup ’, this , this.iconClick_);

17 this.updateEditable ();

18

19 var quantum = Blockly.Icon.RADIUS / 2;

20 var iconShield = Blockly.createSvgElement(’rect’,

21 {’class’: ’blocklyIconShield ’,

22 ’width’: 4 * quantum ,

23 ’height ’: 4 * quantum ,

24 ’rx’: quantum ,

25 ’ry’: quantum}, this.iconGroup_);

26 this.iconMark_ = Blockly.createSvgElement(’text’,

27 {’class’: ’blocklyIconMark ’,
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28 ’x’: Blockly.Icon.RADIUS ,

29 ’y’: 2 * Blockly.Icon.RADIUS - 4}, this.iconGroup_);

30 var icon = this.block_.expandedFolder_ ? "-" : "+";

31 this.iconMark_.appendChild(document.createTextNode(icon));

32 };

33

34 Blockly.FolderIcon.prototype.renderIcon = function(cursorX) {

35 if (this.block_.isCollapsed ()) {

36 this.iconGroup_.setAttribute(’display ’, ’none’);

37 return cursorX;

38 }

39 this.iconGroup_.setAttribute(’display ’, ’block’);

40

41 var TOP_MARGIN = 5;

42 var diameter = 2 * Blockly.Icon.RADIUS;

43 if (Blockly.RTL) {

44 cursorX -= diameter;

45 }

46 this.iconGroup_.setAttribute(’transform ’,

47 ’translate(’ + cursorX + ’, ’ + TOP_MARGIN + ’)’);

48 this.computeIconLocation ();

49 if (Blockly.RTL) {

50 cursorX -= Blockly.BlockSvg.SEP_SPACE_X;

51 } else {

52 cursorX += diameter + Blockly.BlockSvg.SEP_SPACE_X;

53 }

54 return cursorX;

55 };

56

57 Blockly.FolderIcon.prototype.toggleIcon = function () {

58 this.block_.expandedFolder_ = !this.block_.expandedFolder_;

59 this.iconMark_.innerHTML = this.block_.expandedFolder_ ? "-" : "+";

60 };

61

62 Blockly.FolderIcon.prototype.iconClick_ = function(e) {

63 this.toggleIcon ();

64 this.block_.promote ();

65 if (this.block_.isEditable ()) {

66 if (!this.block_.isInFlyout) {

67 this.setVisible (!this.isVisible ());

68 }
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69 }

70 };

71

72 Blockly.FolderIcon.prototype.updateEditable = function () {

73

74 if (this.block_.isEditable ()) {

75 // Default behaviour for an icon.

76 if (!this.block_.isInFlyout) {

77 Blockly.addClass_(/** @type {! Element} */ (this.iconGroup_),

78 ’blocklyIconGroup ’);

79 } else {

80 Blockly.removeClass_(/** @type {! Element} */ (this.iconGroup_),

81 ’blocklyIconGroup ’);

82 }

83 } else {

84 // Close any mutator bubble. Icon is not clickable.

85 this.setVisible(false);

86 Blockly.removeClass_(/** @type {! Element} */ (this.iconGroup_),

87 ’blocklyIconGroup ’);

88 }

89 };

90

91 Blockly.FolderIcon.prototype.setVisible = function(visible) {

92 if (visible == this.isVisible ()) {

93 // No change.

94 return;

95 }

96 if (visible) {

97 // Create the bubble.

98 this.block_.miniworkspace.renderWorkspace(this.block_ , this.iconX_ , this.

iconY_);

99 } else {

100 this.block_.miniworkspace.xml = Blockly.Xml.workspaceToDom(this.block_.

miniworkspace);

101 this.block_.miniworkspace.disposeWorkspace ();

102 }

103

104 this.visible = !this.isVisible ();

105 };

106

107 Blockly.FolderIcon.prototype.getIconLocation = function () {
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108 return {x: this.iconX_ , y: this.iconY_ };

109 };

110

111 Blockly.FolderIcon.prototype.dispose = function () {

112 // Dispose of and unlink the icon.

113 goog.dom.removeNode(this.iconGroup_);

114 this.iconGroup_ = null;

115 // Dispose of and unlink the bubble.

116 this.setVisible(false);

117 this.block_ = null;

118 };

119

120 Blockly.FolderIcon.prototype.computeIconLocation = function () {

121 // Find coordinates for the centre of the icon and update the arrow.

122 var blockXY = this.block_.getRelativeToSurfaceXY ();

123 var iconXY = Blockly.getRelativeXY_(this.iconGroup_);

124 var newX = blockXY.x + iconXY.x + Blockly.Icon.RADIUS;

125 var newY = blockXY.y + iconXY.y + Blockly.Icon.RADIUS;

126 if (newX !== this.iconX_ || newY !== this.iconY_) {

127 this.setIconLocation(newX , newY);

128 }

129 };

130

131 Blockly.FolderIcon.prototype.setIconLocation = function(x, y) {

132 this.iconX_ = x;

133 this.iconY_ = y;

134 };

135

136 Blockly.FolderIcon.prototype.isVisible = function () {

137 return this.visible;

138 };

Listing D.1: appinventor/blocklyeditor/src/folderIcon.js

107



Appendix E

Miniworkspace.js

1 ’use strict ’;

2

3 goog.provide(’Blockly.MiniWorkspace ’);

4 goog.require(’Blockly.Workspace ’);

5 goog.require(’Blockly.ScrollbarPair ’);

6

7 Blockly.MiniWorkspace = function(folder ,getMetrics ,setMetrics) {

8 Blockly.MiniWorkspace.superClass_.constructor.call(this , getMetrics , setMetrics);

9

10 this.block_ = folder;

11 this.topBlocks_ = [];

12 this.maxBlocks = Infinity;

13 this.svgGroup_ = null;

14 this.svgBlockCanvas_ = null;

15 this.svgBubbleCanvas_ = null;

16 this.svgGroupBack_ = null;

17 this.isMW = true;

18 };

19

20 goog.inherits(Blockly.MiniWorkspace , Blockly.Workspace);

21

22 Blockly.MiniWorkspace.prototype.rendered_ = false;

23 Blockly.MiniWorkspace.prototype.scrollbar_ = true;

24

25 Blockly.MiniWorkspace.prototype.anchorX_ = 0;

26 Blockly.MiniWorkspace.prototype.anchorY_ = 0;

27
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28 Blockly.MiniWorkspace.prototype.relativeLeft_ = 0;

29 Blockly.MiniWorkspace.prototype.relativeTop_ = 0;

30 Blockly.MiniWorkspace.prototype.relativeLeft_ = 0;

31

32 Blockly.MiniWorkspace.prototype.width_ = 0;

33 Blockly.MiniWorkspace.prototype.height_ = 0;

34

35 Blockly.MiniWorkspace.prototype.autoLayout_ = true;

36

37 Blockly.MiniWorkspace.getWorkspaceMetrics_ = function () {

38 var svgSize = Blockly.svgSize ();

39 //the workspace is just a percentage though.

40 svgSize.width *= 0.4;

41 svgSize.height *= 0.7;

42

43 //We don’t use Blockly.Toolbox in our version of Blockly instead we use drawer.js

44 // svgSize.width -= Blockly.Toolbox.width; // Zero if no Toolbox.

45 svgSize.width -= 0; // Zero if no Toolbox.

46 var viewWidth = svgSize.width - Blockly.Scrollbar.scrollbarThickness;

47 var viewHeight = svgSize.height - Blockly.Scrollbar.scrollbarThickness;

48 try {

49 var blockBox = this.getCanvas ().getBBox ();

50 } catch (e) {

51 // Firefox has trouble with hidden elements (Bug 528969).

52 return null;

53 }

54 if (this.scrollbar_) {

55 // Add a border around the content that is at least half a screenful wide.

56 // Ensure border is wide enough that blocks can scroll over entire screen.

57 var leftEdge = Math.min(blockBox.x - viewWidth / 2,

58 blockBox.x + blockBox.width - viewWidth);

59 var rightEdge = Math.max(blockBox.x + blockBox.width + viewWidth / 2,

60 blockBox.x + viewWidth);

61 var topEdge = Math.min(blockBox.y - viewHeight / 2,

62 blockBox.y + blockBox.height - viewHeight);

63 var bottomEdge = Math.max(blockBox.y + blockBox.height + viewHeight / 2,

64 blockBox.y + viewHeight);

65 } else {

66 var leftEdge = blockBox.x;

67 var rightEdge = leftEdge + blockBox.width;

68 var topEdge = blockBox.y;
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69 var bottomEdge = topEdge + blockBox.height;

70 }

71 //We don’t use Blockly.Toolbox in our version of Blockly instead we use drawer.js

72 //var absoluteLeft = Blockly.RTL ? 0 : Blockly.Toolbox.width;

73 var absoluteLeft = Blockly.RTL ? 0 : 0;

74 var metrics = {

75 viewHeight: svgSize.height ,

76 viewWidth: svgSize.width ,

77 contentHeight: bottomEdge - topEdge ,

78 contentWidth: rightEdge - leftEdge ,

79 viewTop: -this.scrollY ,

80 viewLeft: -this.scrollX ,

81 contentTop: topEdge ,

82 contentLeft: leftEdge ,

83 absoluteTop: 0,

84 absoluteLeft: absoluteLeft

85 };

86 return metrics;

87 };

88

89 Blockly.MiniWorkspace.setWorkspaceMetrics_ = function(xyRatio) {

90 if (!this.scrollbar) {

91 throw ’Attempt to set mini workspace scroll without scrollbars.’;

92 }

93 var metrics = this.getMetrics ();// Blockly.MiniWorkspace.getWorkspaceMetrics_ ();

94 if (goog.isNumber(xyRatio.x)) {

95 this.scrollX = -metrics.contentWidth * xyRatio.x -

96 metrics.contentLeft;

97 }

98 if (goog.isNumber(xyRatio.y)) {

99 this.scrollY = -metrics.contentHeight * xyRatio.y -

100 metrics.contentTop;

101 }

102 var translation = ’translate(’ +

103 (this.scrollX + metrics.absoluteLeft) + ’,’ +

104 (this.scrollY + metrics.absoluteTop) + ’)’;

105 this.getCanvas ().setAttribute(’transform ’, translation);

106 this.getBubbleCanvas ().setAttribute(’transform ’,

107 translation);

108 };

109
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110 //TODO

111 Blockly.MiniWorkspace.prototype.renderWorkspace = function (folder , anchorX , anchorY)

{

112 this.createDom ();

113

114 Blockly.ConnectionDB.init(this);

115 this.block_.expandedFolder_ = true;

116 this.workspace_ = folder.workspace;

117 this.shape_ = folder.svg_.svgPath_;

118 var canvas = Blockly.mainWorkspace.getCanvas ();

119 canvas.appendChild(this.createDom_ ());

120

121 this.setAnchorLocation(anchorX , anchorY);

122 //Set MW Size

123 try {

124 var bBox = /** @type {SVGLocatable} */ (this.svgBlockCanvas_).getBBox ();

125 } catch (e) {

126 // Firefox has trouble with hidden elements (Bug 528969).

127 var bBox = {height: 0, width: 0};

128 }

129 this.width_ = bBox.width + 2 * Blockly.Bubble.BORDER_WIDTH;

130 this.height_ = bBox.height + 2 * Blockly.Bubble.BORDER_WIDTH;

131 var doubleBorderWidth = 2 * Blockly.Bubble.BORDER_WIDTH;

132 this.width_ = Math.max(this.width_ , doubleBorderWidth + 45);

133 this.height_ = Math.max(this.height_ , 30 + Blockly.BlockSvg.FIELD_HEIGHT);

134 this.svgGroupBack_.setAttribute(’width’,this.width_);

135 this.svgGroupBack_.setAttribute(’height ’,this.height_ +20);

136 this.svgGroupBack_.setAttribute(’transform ’,’translate (-5,-5)’);

137 this.svgGroup_.setAttribute(’width’,this.width_);

138 this.svgTitle_.setAttribute(’transform ’,’translate (10,’+(this.height_ +5)+’)’);

139

140

141 Blockly.fireUiEvent(this.svgGroup_ ,’resize ’);

142

143 this.positionMiniWorkspace_ ();

144 this.rendered_ = true;

145 this.scrollbar = new Blockly.ScrollbarPair(this);

146 this.scrollbar.resize ();

147

148 if (this.xml) {

149 this.clear();
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150 Blockly.Xml.domToWorkspace(this , this.xml);

151 }

152

153 this.render ();

154

155 if (! Blockly.readOnly) {

156 Blockly.bindEvent_(this.svgGroupBack_ , ’mousedown ’, this ,

157 this.miniWorkspaceMouseDown_);

158 }

159 };

160

161 //TODO

162 Blockly.MiniWorkspace.prototype.disposeWorkspace = function () {

163 for (var i = 1; i < 5; i++) {

164 console.log(i+" "+this.connectionDBList[i]. length);

165 }

166

167 Blockly.MiniWorkspace.unbindDragEvents_ ();

168 // Dispose of and unlink the bubble.

169 goog.dom.removeNode(this.svgGroup_);

170 this.svgGroup_ = null;

171 this.svgBlockCanvas_ = null;

172 this.svgBubbleCanvas_ = null;

173 this.svgGroupBack_ = null;

174 this.workspace_ = null;

175 this.content_ = null;

176 this.shape_ = null;

177 this.block_.expandedFolder_ = false;

178

179 for (var t = 0, block; block = this.topBlocks_[t]; t++) {

180 block.rendered = false;

181 }

182 };

183

184 // MiniWorkspace cannot be resized - this can change in the future

185 Blockly.MiniWorkspace.prototype.createDom_ = function () {

186 this.svgGroup_ = Blockly.createSvgElement(’g’, {}, null);

187 var svgGroupEmboss = Blockly.createSvgElement(’g’,

188 {’filter ’: ’url(# blocklyEmboss)’}, this.svgGroup_);

189
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190 this.svgBlockCanvasOuter_ = Blockly.createSvgElement(’svg’, {’height ’: ’70%’, ’

width’: ’40%’}, this.svgGroup_);

191

192 this.svgBlockCanvas_ = Blockly.createSvgElement(’g’, {}, this.

svgBlockCanvasOuter_);

193 Blockly.bindEvent_(this.svgBlockCanvas_ , ’mousedown ’, this.svgBlockCanvas_ ,

194 function(e) {

195 e.preventDefault ();

196 e.stopPropagation ();

197 });

198

199 Blockly.createSvgElement(’rect’,

200 {’class’: ’blocklyFolderBackground ’,

201 ’height ’: ’100%’, ’width ’: ’100%’}, this.svgBlockCanvas_);

202

203 this.svgBubbleCanvas_ = Blockly.createSvgElement(’g’, {’height ’: ’100%’, ’width’:

’100%’}, this.svgGroup_);

204 this.svgGroupBack_ = Blockly.createSvgElement(’rect’,

205 {’class’: ’blocklyDraggable ’, ’x’: 0, ’y’: 0,

206 ’rx’: Blockly.Bubble.BORDER_WIDTH , ’ry’: Blockly.Bubble.BORDER_WIDTH},

207 svgGroupEmboss);

208 Blockly.createSvgElement(’rect’,

209 {’class’:’blocklyMutatorBackground ’,

210 ’height ’: ’70%’, ’width ’: ’40%’}, svgGroupEmboss);

211 this.svgTitle_ = Blockly.createSvgElement(’text’,{

212 ’class’:’blocklyText ’},this.svgGroup_);

213 this.svgTitle_.innerHTML="Folder"+this.block_.id;

214 this.resizeGroup_ = null;

215 //this.svgBlockCanvas_.appendChild(content);

216

217 //this.svgGroup_.appendChild(content);

218

219 return this.svgGroup_;

220 };

221

222 Blockly.MiniWorkspace.prototype.addTopBlock = function(block) {

223 block.workspace == this;

224 block.isInFolder = true;

225 this.topBlocks_.push(block);

226 if (Blockly.Realtime.isEnabled () && this == Blockly.mainWorkspace) {

227 Blockly.Realtime.addTopBlock(block);

113



228 }

229 this.fireChangeEvent ();

230 };

231

232 Blockly.MiniWorkspace.prototype.setAnchorLocation = function (x,y) {

233 this.anchorX_ = x;

234 this.anchorY_ = y;

235 if (this.rendered_) {

236 this.positionMiniWorkspace_ ();

237 }

238 };

239

240 Blockly.MiniWorkspace.prototype.positionMiniWorkspace_ = function () {

241 var left;

242 if (Blockly.RTL) {

243 left = this.anchorX_ - this.relativeLeft_ - this.width_;

244 } else {

245 left = this.anchorX_ + this.relativeLeft_;

246 }

247 var top = this.relativeTop_ + this.anchorY_;

248 this.svgGroup_.setAttribute(’transform ’,

249 ’translate(’ + left + ’, ’ + top + ’)’);

250 };

251

252 Blockly.MiniWorkspace.prototype.miniWorkspaceMouseDown_ = function (e) {

253 this.promote_ ();

254 Blockly.MiniWorkspace.unbindDragEvents_ ();

255 if (Blockly.isRightButton(e)) {

256 // Right -click.

257 return;

258 } else if (Blockly.isTargetInput_(e)) {

259 // When focused on an HTML text input widget , don’t trap any events.

260 return;

261 }

262 // Left -click (or middle click)

263 Blockly.setCursorHand_(true);

264 // Record the starting offset between the current location and the mouse.

265 if (Blockly.RTL) {

266 this.dragDeltaX = this.relativeLeft_ + e.clientX;

267 } else {

268 this.dragDeltaX = this.relativeLeft_ - e.clientX;
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269 }

270 this.dragDeltaY = this.relativeTop_ - e.clientY;

271

272 Blockly.MiniWorkspace.onMouseUpWrapper_ = Blockly.bindEvent_(document ,

273 ’mouseup ’, this , Blockly.MiniWorkspace.unbindDragEvents_);

274 Blockly.MiniWorkspace.onMouseMoveWrapper_ = Blockly.bindEvent_(document ,

275 ’mousemove ’, this , this.MiniWorkspaceMouseMove_);

276 Blockly.hideChaff ();

277 // This event has been handled. No need to bubble up to the document.

278 e.stopPropagation ();

279 };

280

281 Blockly.MiniWorkspace.unbindDragEvents_ = function () {

282 if (Blockly.MiniWorkspace.onMouseUpWrapper_) {

283 Blockly.unbindEvent_(Blockly.MiniWorkspace.onMouseUpWrapper_);

284 Blockly.MiniWorkspace.onMouseUpWrapper_ = null;

285 }

286 if (Blockly.MiniWorkspace.onMouseMoveWrapper_) {

287 Blockly.unbindEvent_(Blockly.MiniWorkspace.onMouseMoveWrapper_);

288 Blockly.MiniWorkspace.onMouseMoveWrapper_ = null;

289 }

290 };

291

292 Blockly.MiniWorkspace.prototype.MiniWorkspaceMouseMove_ = function(e) {

293 this.autoLayout_ = false;

294 if (Blockly.RTL) {

295 this.relativeLeft_ = this.dragDeltaX - e.clientX;

296 } else {

297 this.relativeLeft_ = this.dragDeltaX + e.clientX;

298 }

299 this.relativeTop_ = this.dragDeltaY + e.clientY;

300 this.positionMiniWorkspace_ ();

301 };

302

303 Blockly.MiniWorkspace.prototype.promote_ = function () {

304 var svgGroup = this.svgGroup_.parentNode;

305 svgGroup.appendChild(this.svgGroup_);

306 this.block_.promote ();

307 };

308

309 Blockly.MiniWorkspace.prototype.highlight_ = function () {
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310 Blockly.addClass_(/** @type {! Element} */ (this.svgGroupBack_),

311 ’blocklySelectedFolder ’);

312 };

313

314 Blockly.MiniWorkspace.prototype.unhighlight_ = function () {

315 Blockly.removeClass_(/** @type {! Element} */ (this.svgGroupBack_),

316 ’blocklySelectedFolder ’);

317 };

Listing E.1: appinventor/blocklyeditor/src/miniworkspace.js
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Appendix F

Yail.js

Path to file: appinventor/lib/blockly/src/core/yail.js. Functions with changes are listed below:

1 Blockly.Yail.getDebuggingYail = function () {

2 var code = [];

3 var componentMap = Blockly.Component.buildComponentMap ([], [], false , false);

4

5 var globalBlocks = componentMap.globals;

6 for (var i = 0, block; block = globalBlocks[i]; i++) {

7 code.push(Blockly.Yail.blockToCode(block));

8 }

9

10 var blocks = Blockly.mainWorkspace.getTopBlocks(true);

11 //[Shirley 3/21] post -process of topBlocks

12

13 var blocks2 = [];

14 for (var x = 0, block; block = blocks[x]; x++) {

15 if (block.category == "Folders") {

16 blocks2 = blocks2.concat(block.miniworkspace.topBlocks_);

17 } else {

18 blocks2 = blocks2.concat(block);

19 }

20 }

21 blocks = blocks2;

22 //[Shirley 3/21] end

23

24 for (var x = 0, block; block = blocks[x]; x++) {

25

26 // generate Yail for each top -level language block
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27 if (!block.category) {

28 continue;

29 }

30 code.push(Blockly.Yail.blockToCode(block));

31 }

32 return code.join(’\n\n’);

33 };

Listing F.1: Blockly.Yail.getDebuggingYail
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Appendix G

Block.js

Path to file: appinventor/lib/blockly/src/core/block.js. Functions with changes are listed below:

1 Blockly.Block.prototype.dispose = function(healStack , animate ,

2 dontRemoveFromWorkspace) {

3 if (this.type == "folder") {

4 this.miniworkspace.dispose ();

5 }

6

7 // Switch off rerendering.

8 this.rendered = false;

9 this.unplug(healStack);

10

11 if (animate && this.svg_) {

12 this.svg_.disposeUiEffect ();

13 }

14

15 // This block is now at the top of the workspace.

16 // Remove this block from the workspace ’s list of top -most blocks.

17 if (this.workspace && !dontRemoveFromWorkspace) {

18 this.workspace.removeTopBlock(this);

19 this.workspace = null;

20 }

21

22 // Just deleting this block from the DOM would result in a memory leak as

23 // well as corruption of the connection database. Therefore we must

24 // methodically step through the blocks and carefully disassemble them.

25

26 if (Blockly.selected == this) {
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27 Blockly.selected = null;

28 // If there’s a drag in -progress , unlink the mouse events.

29 Blockly.terminateDrag_ ();

30 }

31

32 // If this block has a context menu open , close it.

33 if (Blockly.ContextMenu.currentBlock == this) {

34 Blockly.ContextMenu.hide();

35 }

36

37 // First , dispose of all my children.

38 for (var x = this.childBlocks_.length - 1; x >= 0; x--) {

39 this.childBlocks_[x]. dispose(false);

40 }

41 // Then dispose of myself.

42 var icons = this.getIcons ();

43 for (var x = 0; x < icons.length; x++) {

44 icons[x]. dispose ();

45 }

46 if (this.errorIcon) {

47 this.errorIcon.dispose ();

48 }

49

50 // Dispose of all inputs and their fields.

51 for (var x = 0, input; input = this.inputList[x]; x++) {

52 input.dispose ();

53 }

54 this.inputList = [];

55 // Dispose of any remaining connections (next/previous/output).

56 var connections = this.getConnections_(true);

57 for (var x = 0; x < connections.length; x++) {

58 var connection = connections[x];

59 if (connection.targetConnection) {

60 connection.disconnect ();

61 }

62 connections[x]. dispose ();

63 }

64 // Dispose of the SVG and break circular references.

65 if (this.svg_) {

66 this.svg_.dispose ();

67 this.svg_ = null;
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68 }

69 // Remove from Realtime set of blocks.

70 if (Blockly.Realtime.isEnabled () && !Blockly.Realtime.withinSync) {

71 Blockly.Realtime.removeBlock(this);

72 }

73 // Remove any associated errors or warnings.

74 Blockly.WarningHandler.checkDisposedBlock.call(this);

75 };

Listing G.1: Blockly.Block.prototype.dispose

1 Blockly.Block.prototype.onMouseDown_ = function(e) {

2 if (this.isInFlyout) {

3 return;

4 }

5 // Update Blockly ’s knowledge of its own location.

6 Blockly.svgResize ();

7 Blockly.terminateDrag_ ();

8

9 this.select ();

10 Blockly.hideChaff ();

11 if (Blockly.isRightButton(e)) {

12 // Right -click.

13 this.showContextMenu_(e);

14 } else if (!this.isMovable ()) {

15 // Allow unmovable blocks to be selected and context menued , but not

16 // dragged. Let this event bubble up to document , so the workspace may be

17 // dragged instead.

18 return;

19 } else {

20 // Left -click (or middle click)

21 Blockly.removeAllRanges ();

22 Blockly.setCursorHand_(true);

23 // Look up the current translation and record it.

24 var xy = this.getRelativeToSurfaceXY ();

25 this.startDragX = xy.x;

26 this.startDragY = xy.y;

27 // Record the current mouse position.

28 this.startDragMouseX = e.clientX;

29 this.startDragMouseY = e.clientY;

30 Blockly.Block.dragMode_ = 1;

31 Blockly.Block.onMouseUpWrapper_ = Blockly.bindEvent_(document ,
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32 ’mouseup ’, this , this.onMouseUp_);

33 Blockly.Block.onMouseMoveWrapper_ = Blockly.bindEvent_(document ,

34 ’mousemove ’, this , this.onMouseMove_);

35 // Build a list of bubbles that need to be moved and where they started.

36 this.draggedBubbles_ = [];

37 var descendants = this.getDescendants ();

38 for (var x = 0, descendant; descendant = descendants[x]; x++) {

39 var icons = descendant.getIcons ();

40 for (var y = 0; y < icons.length; y++) {

41 var data = icons[y]. getIconLocation ();

42 data.bubble = icons[y];

43 this.draggedBubbles_.push(data);

44 }

45 if (descendant.errorIcon) {

46 var data = descendant.errorIcon.getIconLocation ();

47 data.bubble = descendant.errorIcon;

48 this.draggedBubbles_.push(data);

49 }

50 }

51 }

52 // This event has been handled. No need to bubble up to the document.

53 e.stopPropagation ();

54 };

1 Blockly.Block.prototype.onMouseUp_ = function(e) {

2 var start = new Date().getTime ();

3 Blockly.Instrument.initializeStats("onMouseUp");

4 var this_ = this;

5 Blockly.resetWorkspaceArrangements ();

6 Blockly.doCommand(function () {

7 Blockly.terminateDrag_ ();

8

9 if (Blockly.selectedFolder_) {

10 Blockly.selectedFolder_.miniworkspace.moveBlock(this_);

11 }

12

13

14 if (Blockly.selected && Blockly.highlightedConnection_) {

15 // Connect two blocks together.

16 Blockly.localConnection_.connect(Blockly.highlightedConnection_);

17 if (this_.svg_) {
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18 // Trigger a connection animation.

19 // Determine which connection is inferior (lower in the source stack).

20 var inferiorConnection;

21 if (Blockly.localConnection_.isSuperior ()) {

22 inferiorConnection = Blockly.highlightedConnection_;

23 } else {

24 inferiorConnection = Blockly.localConnection_;

25 }

26 inferiorConnection.sourceBlock_.svg_.connectionUiEffect ();

27 }

28 if (this_.workspace.trashcan && this_.workspace.trashcan.isOpen) {

29 // Don’t throw an object in the trash can if it just got connected.

30 this_.workspace.trashcan.close ();

31 }

32 } else if (this_.workspace.trashcan && this_.workspace.trashcan.isOpen) {

33 var trashcan = this_.workspace.trashcan;

34 goog.Timer.callOnce(trashcan.close , 100, trashcan);

35 if (Blockly.selected.confirmDeletion ()) {

36 Blockly.selected.dispose(false , true);

37 }

38 // Dropping a block on the trash can will usually cause the workspace to

39 // resize to contain the newly positioned block. Force a second resize

40 // now that the block has been deleted.

41 Blockly.fireUiEvent(window , ’resize ’);

42 }

43

44 if (Blockly.highlightedConnection_) {

45 Blockly.highlightedConnection_.unhighlight ();

46 Blockly.highlightedConnection_ = null;

47 }

48

49 if (Blockly.selectedFolder_) {

50 Blockly.selectedFolder_.miniworkspace.unhighlight_ ();

51 Blockly.selectedFolder_ = null;

52 }

53

54 });

55 if (! Blockly.Instrument.avoidRenderWorkspaceInMouseUp) {

56 // [lyn , 04/01/14] rendering a workspace takes a *long* time and is *not*

necessary!

57 // This is the key source of the laggy drag problem. Remove it!

123



58 Blockly.mainWorkspace.render ();

59 }

60 Blockly.WarningHandler.checkAllBlocksForWarningsAndErrors ();

61 var stop = new Date().getTime ();

62 var timeDiff = stop - start;

63 Blockly.Instrument.stats.totalTime = timeDiff;

64 Blockly.Instrument.displayStats("onMouseUp");

65 };

Listing G.2: Blockly.Block.prototype.onMouseUp

1 Blockly.Block.prototype.onMouseMove_ = function(e) {

2 var this_ = this;

3 Blockly.doCommand(function () {

4 if (e.type == ’mousemove ’ && e.clientX <= 1 && e.clientY == 0 &&

5 e.button == 0) {

6 /* HACK:

7 Safari Mobile 6.0 and Chrome for Android 18.0 fire rogue mousemove events

8 on certain touch actions. Ignore events with these signatures.

9 This may result in a one -pixel blind spot in other browsers ,

10 but this shouldn ’t be noticable. */

11 e.stopPropagation ();

12 return;

13 }

14 Blockly.removeAllRanges ();

15 var dx = e.clientX - this_.startDragMouseX;

16 var dy = e.clientY - this_.startDragMouseY;

17 if (Blockly.Block.dragMode_ == 1) {

18 // Still dragging within the sticky DRAG_RADIUS.

19 var dr = Math.sqrt(Math.pow(dx , 2) + Math.pow(dy , 2));

20 if (dr > Blockly.DRAG_RADIUS) {

21 // Switch to unrestricted dragging.

22 Blockly.Block.dragMode_ = 2;

23 // Push this block to the very top of the stack.

24 this_.setParent(null);

25 this_.setDragging_(true);

26 }

27 }

28 // [Shirley 4/11] - everytime a block is clicked , it is put in the mainWorkspace

29 if (this_.workspace.isMW) {

30 var transformMatrix = Blockly.mainWorkspace.moveOutOfFolder(this_);

31 this_.startDragX += transformMatrix [0];
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32 this_.startDragY += transformMatrix [1];

33 }

34 if (Blockly.Block.dragMode_ == 2) {

35 // Unrestricted dragging.

36 // console.log("drag " + this_.startDragX+ " "+ this_.startDragY+ " "+dx+" "+

dy);

37 var x = this_.startDragX + dx;

38 var y = this_.startDragY + dy;

39 // console.log("drag2 "+x+" "+y);

40 this_.svg_.getRootElement ().setAttribute(’transform ’,

41 ’translate(’ + x + ’, ’ + y + ’)’);

42 // Drag all the nested bubbles.

43 for (var i = 0; i < this_.draggedBubbles_.length; i++) {

44 var commentData = this_.draggedBubbles_[i];

45 commentData.bubble.setIconLocation(commentData.x + dx ,

46 commentData.y + dy);

47 }

48

49 //find the folder the block is over

50 var overFolder = null;

51 for (var i = 0; i < Blockly.ALL_FOLDERS.length; i++) {

52 if (this_ != Blockly.ALL_FOLDERS[i] &&

53 Blockly.ALL_FOLDERS[i]. isOverFolder(e)) {

54 overFolder = Blockly.ALL_FOLDERS[i];

55 break;

56 }

57 }

58 // remove highlighting if necessary

59 if (Blockly.selectedFolder_ &&

60 Blockly.selectedFolder_ != overFolder) {

61 Blockly.selectedFolder_.miniworkspace.unhighlight_ ();

62 Blockly.selectedFolder_ = null;

63 }

64 //add highlighting if necessary

65 if (overFolder && overFolder != Blockly.selectedFolder_) {

66 Blockly.selectedFolder_ = overFolder;

67 Blockly.selectedFolder_.miniworkspace.highlight_ ();

68 }

69

70 // Check to see if any of this block’s connections are within range of

71 // another block’s connection.
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72 var myConnections = this_.getConnections_(false);

73 var closestConnection = null;

74 var localConnection = null;

75 var radiusConnection = Blockly.SNAP_RADIUS;

76 for (var i = 0; i < myConnections.length; i++) {

77 var myConnection = myConnections[i];

78 var neighbour = myConnection.closest(radiusConnection , dx , dy, Blockly.

selectedFolder_);

79 if (neighbour.connection) {

80 closestConnection = neighbour.connection;

81 localConnection = myConnection;

82 radiusConnection = neighbour.radius;

83 }

84 }

85

86 // Remove connection highlighting if needed.

87 if (Blockly.highlightedConnection_ &&

88 Blockly.highlightedConnection_ != closestConnection) {

89 Blockly.highlightedConnection_.unhighlight ();

90 Blockly.highlightedConnection_ = null;

91 Blockly.localConnection_ = null;

92 }

93

94 // Add connection highlighting if needed.

95 if (closestConnection &&

96 closestConnection != Blockly.highlightedConnection_) {

97 closestConnection.highlight ();

98 Blockly.highlightedConnection_ = closestConnection;

99 Blockly.localConnection_ = localConnection;

100 }

101

102

103 // Flip the trash can lid if needed.

104 if (this_.workspace.trashcan && this_.isDeletable ()) {

105 this_.workspace.trashcan.onMouseMove(e);

106 }

107 }

108 // This event has been handled. No need to bubble up to the document.

109 e.stopPropagation ();

110 });
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111 };

Listing G.3: Blockly.Block.prototype.onMouseMove
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Appendix H

Connection.js

Path to file: appinventor/lib/blockly/src/core/connection.js. Functions with changes are listed be-

low:

1 Blockly.Connection.prototype.moveTo = function(x, y) {

2 // Remove it from its old location in the database (if already present)

3 if (this.inDB_) {

4 this.dbList_[this.type]. removeConnection_(this);

5 }

6 this.x_ = x;

7 this.y_ = y;

8 // Insert it into its new location in the database.

9 if (!this.dbList_) {

10 this.dbList_ = this.sourceBlock_.workspace.workspace_.connectionDBList;

11 }

12 this.dbList_[this.type]. addConnection_(this);

13 };

Listing H.1: Blockly.Connection.prototype.moveTo

1 Blockly.Connection.prototype.closest = function(maxLimit , dx, dy, folder) {

2 if (this.targetConnection) {

3 // Don’t offer to connect to a connection that’s already connected.

4 return {connection: null , radius: maxLimit };

5 }

6 // Determine the opposite type of connection.

7 var oppositeType = Blockly.OPPOSITE_TYPE[this.type];

8 var db = this.dbList_[oppositeType ];

9 var folderdx = 0;
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10 var folderdy = 0;

11

12 if (folder) {

13 db = folder.miniworkspace.connectionDBList[oppositeType ];

14 var folderOrigin = Blockly.getRelativeXY_(folder.miniworkspace.svgGroup_);

15 var translate_ = folder.miniworkspace.getTranslate ();

16 folderdx = folderOrigin.x + parseInt(translate_ [0]);

17 folderdy = folderOrigin.y + parseInt(translate_ [1]);

18 }

19

20 // Since this connection is probably being dragged , add the delta.

21 var currentX = this.x_ + dx - folderdx;

22 var currentY = this.y_ + dy - folderdy;

23

24 // Binary search to find the closest y location.

25 var pointerMin = 0;

26 var pointerMax = db.length - 2;

27 var pointerMid = pointerMax;

28 while (pointerMin < pointerMid) {

29 if (db[pointerMid ].y_ < currentY) {

30 pointerMin = pointerMid;

31 } else {

32 pointerMax = pointerMid;

33 }

34 pointerMid = Math.floor (( pointerMin + pointerMax) / 2);

35 }

36

37 // Walk forward and back on the y axis looking for the closest x,y point.

38 pointerMin = pointerMid;

39 pointerMax = pointerMid;

40 var closestConnection = null;

41 var sourceBlock = this.sourceBlock_;

42 var thisConnection = this;

43 if (db.length) {

44 while (pointerMin >= 0 && checkConnection_(pointerMin)) {

45 pointerMin --;

46 }

47 do {

48 pointerMax ++;

49 } while (pointerMax < db.length && checkConnection_(pointerMax));

50 }
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51

52 /**

53 * Computes if the current connection is within the allowed radius of another

54 * connection.

55 * This function is a closure and has access to outside variables.

56 * @param {number} yIndex The other connection ’s index in the database.

57 * @return {boolean} True if the search needs to continue: either the current

58 * connection ’s vertical distance from the other connection is less than

59 * the allowed radius , or if the connection is not compatible.

60 */

61 function checkConnection_(yIndex) {

62 var connection = db[yIndex ];

63 if (connection.type == Blockly.OUTPUT_VALUE ||

64 connection.type == Blockly.PREVIOUS_STATEMENT) {

65 // Don’t offer to connect an already connected left (male) value plug to

66 // an available right (female) value plug. Don’t offer to connect the

67 // bottom of a statement block to one that’s already connected.

68 if (connection.targetConnection) {

69 return true;

70 }

71 }

72 // Offering to connect the top of a statement block to an already connected

73 // connection is ok, we’ll just insert it into the stack.

74

75 // Offering to connect the left (male) of a value block to an already

76 // connected value pair is ok, we’ll splice it in.

77 // However , don’t offer to splice into an unmovable block.

78 if (connection.type == Blockly.INPUT_VALUE &&

79 connection.targetConnection &&

80 !connection.targetBlock ().isMovable ()) {

81 return true;

82 }

83

84 // Do type checking.

85 if (! thisConnection.checkType_(connection)) {

86 return true;

87 }

88

89 // Don’t let blocks try to connect to themselves or ones they nest.

90 var targetSourceBlock = connection.sourceBlock_;

91 do {
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92 if (sourceBlock == targetSourceBlock) {

93 return true;

94 }

95 targetSourceBlock = targetSourceBlock.getParent ();

96 } while (targetSourceBlock);

97

98 var dx = currentX - db[yIndex ].x_;

99 var dy = currentY - db[yIndex ].y_;

100 var r = Math.sqrt(dx * dx + dy * dy);

101 if (r <= maxLimit) {

102 closestConnection = db[yIndex ];

103 maxLimit = r;

104 }

105 return dy < maxLimit;

106 }

107 return {connection: closestConnection , radius: maxLimit };

108 };

Listing H.2: Blockly.Connection.prototype.closest
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Appendix I

Workspace.js

Path to file: appinventor/lib/blockly/src/core/workspace.js.

1 Blockly.Workspace.prototype.moveBlock = function(block) {

2

3 this.moveIntoFolder(block);

4 this.moveChild(block);

5 };

6

7 // newWorkspace.moveIntoFolder(block)

8 Blockly.Workspace.prototype.moveIntoFolder = function (block) {

9 // The oldWorkspace will always be the mainWorkspace

10 var oldWorkspace = Blockly.mainWorkspace;

11 // newWorkspace will always be this

12 var newWorkspace = this;

13

14 // Move the Block into the right place in the folder

15 var blockRelativeToMWXY = block.getRelativeToSurfaceXY ();

16 var miniWorkspaceOrigin = Blockly.getRelativeXY_(this.svgGroup_);

17 Blockly.mainWorkspace.removeTopBlock(block);

18 this.addTopBlock(block);

19 // surgically removes all svg associated with block from old workspace canvas

20 var svgGroup = goog.dom.removeNode(block.svg_.svgGroup_);

21 block.workspace = this;

22 this.getCanvas ().appendChild(svgGroup);

23

24 var translate_ = this.getTranslate ();

25 var dx = -1 * (miniWorkspaceOrigin.x + parseInt(translate_ [0]));

26 var dy = -1 * (miniWorkspaceOrigin.y + parseInt(translate_ [1]));
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27 var x = blockRelativeToMWXY.x + dx;

28 var y = blockRelativeToMWXY.y + dy;

29 block.svg_.getRootElement ().setAttribute(’transform ’,

30 ’translate(’ + x + ’, ’ + y + ’)’);

31

32 // remove , change x & y, add

33 if (block.outputConnection) {

34 changeConnection(block.outputConnection);

35 }

36 if (block.nextConnection) {

37 changeConnection(block.nextConnection);

38 }

39 if (block.previousConnection) {

40 changeConnection(block.previousConnection);

41 }

42 if (block.inputList) {

43 for (var i = 0; i < block.inputList.length; i++) {

44 var c = block.inputList[i];

45 if (c.connection) {

46 changeConnection(c.connection);

47 }

48 }

49 }

50

51 function changeConnection (connect) {

52 oldWorkspace.connectionDBList[connect.type]. removeConnection_(connect);

53 connect.x_ += dx;

54 connect.y_ += dy;

55 newWorkspace.connectionDBList[connect.type]. addConnection_(connect);

56 if (connect.targetConnection) {

57 var tconnect = connect.targetConnection;

58 oldWorkspace.connectionDBList[tconnect.type]. removeConnection_(tconnect);

59 tconnect.x_ += dx;

60 tconnect.y_ += dy;

61 newWorkspace.connectionDBList[tconnect.type]. addConnection_(tconnect);

62 tconnect.dbList_ = newWorkspace.connectionDBList;

63 }

64 connect.dbList_ = newWorkspace.connectionDBList;

65 }

66

67 };
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68

69 // newWorkspace.moveOutOfFolder(block)

70 Blockly.Workspace.prototype.moveOutOfFolder = function (block) {

71 // this is used everytime a block is clicked - if it’s in main , don’t move it

72 if (block.workspace == Blockly.mainWorkspace) {

73 return;

74 }

75

76 //Move block into the right place in the main workspace

77 var oldWorkspace = block.workspace;

78 var newWorkspace = this;

79 var blockRelativeToWXY = block.getRelativeToSurfaceXY ();

80 var miniWorkspaceOrigin = Blockly.getRelativeXY_(oldWorkspace.svgGroup_);

81 oldWorkspace.removeTopBlock(block);

82 newWorkspace.addTopBlock(block);

83 // surgically removes all svg associated with block from old workspace canvas

84 var svgGroup = goog.dom.removeNode(block.svg_.svgGroup_);

85 block.workspace = newWorkspace;

86 newWorkspace.getCanvas ().appendChild(svgGroup);

87

88 var translate_ = oldWorkspace.getTranslate ();

89 var dx = miniWorkspaceOrigin.x + parseInt(translate_ [0]);

90 var dy = miniWorkspaceOrigin.y + parseInt(translate_ [1]);

91 var x = blockRelativeToWXY.x + dx;

92 var y = blockRelativeToWXY.y + dy;

93 block.svg_.getRootElement ().setAttribute(’transform ’,

94 ’translate(’ + x + ’, ’ + y + ’)’);

95 block.isInFolder = false;

96

97 // Change the old workspace and new workspace ’s connectionDBList

98 if (block.outputConnection) {

99 changeConnection(block.outputConnection);

100 }

101 if (block.nextConnection) {

102 changeConnection(block.nextConnection);

103 }

104 if (block.previousConnection) {

105 changeConnection(block.previousConnection);

106 }

107 if (block.inputList) {

108 for (var i = 0; i < block.inputList.length; i++) {
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109 var c = block.inputList[i];

110 if (c.connection) {

111 changeConnection(c.connection);

112 }

113 }

114 }

115

116 function changeConnection (connect) {

117 oldWorkspace.connectionDBList[connect.type]. removeConnection_(connect);

118 connect.x_ += dx;

119 connect.y_ += dy;

120 newWorkspace.connectionDBList[connect.type]. addConnection_(connect);

121 if (connect.targetConnection) {

122 var tconnect = connect.targetConnection;

123 oldWorkspace.connectionDBList[tconnect.type]. removeConnection_(tconnect);

124 tconnect.x_ += dx;

125 tconnect.y_ += dy;

126 newWorkspace.connectionDBList[tconnect.type]. addConnection_(tconnect);

127 tconnect.dbList_ = newWorkspace.connectionDBList;

128 }

129 connect.dbList_ = newWorkspace.connectionDBList;

130 }

131

132 newWorkspace.moveChild(block);

133

134 return [dx,dy];

135

136 };

137

138 Blockly.Workspace.prototype.moveChild = function(block){

139 for (var cb = 0; cb < block.childBlocks_.length; cb++) {

140 var childBlock = block.childBlocks_[cb];

141 this.moveChild(childBlock);

142 childBlock.workspace = this;

143 }

144 }

145

146 Blockly.Workspace.prototype.getTranslate = function () {

147 var translate = this.getCanvas ().getAttribute("transform");

148 translate = translate.split("(")[1]. split(")")[0];

149 return translate.split(",");

135



150 };

Listing I.1: New functions added to workspace.js

136



Appendix J

XML.js

Path to file: appinventor/lib/blockly/src/core/xml.js. Functions with changes are listed below:

1 Blockly.Xml.workspaceToDom = function(workspace) {

2 var width; // Not used in LTR.

3 if (Blockly.RTL) {

4 width = workspace.getMetrics ().viewWidth;

5 }

6 var xml = goog.dom.createDom(’xml’);

7 var blocks = workspace.getTopBlocks(true);

8 for (var i = 0, block; block = blocks[i]; i++) {

9 var element = Blockly.Xml.blockToDom_(block);

10 if (block.type == "folder") {

11 var folder = Blockly.Xml.workspaceToDom(block.miniworkspace);

12 for (var x = 0, b; b = folder.childNodes[x];){

13 element.appendChild(b);

14 }

15 }

16 var xy = block.getRelativeToSurfaceXY ();

17 element.setAttribute(’x’, Blockly.RTL ? width - xy.x : xy.x);

18 element.setAttribute(’y’, xy.y);

19 xml.appendChild(element);

20 }

21 return xml;

22 };

Listing J.1: Blockly.Xml.workspaceToDom

1 Blockly.Xml.domToWorkspace = function(workspace , xml) {

2 Blockly.Instrument.timer (
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3 function () {

4 var width; // Not used in LTR.

5 if (Blockly.RTL) {

6 width = workspace.getMetrics ().viewWidth;

7 }

8 // The commented line below was replaced because it would reference beyond

9 // the end of the childNodes pseudo -array. In Chrome this is fine because

10 // the value returned is "undefined" which counts as false. However when

11 // using phantomjs (unit test) you wind up fetching memory garbage (!!)

12 //

13 // for (var x = 0, xmlChild; xmlChild = xml.childNodes[x]; x++) {

14 var xmlChild;

15 for (var x = 0; x < xml.childNodes.length; x++) {

16 xmlChild = xml.childNodes[x];

17 if (xmlChild.nodeName.toLowerCase () == ’block ’) {

18 var block = Blockly.Xml.domToBlock(workspace , xmlChild);

19 if (block.type == "folder") {

20 var folderXML = goog.dom.createDom(’xml’);

21 while(xmlChild.children.length > 0) {

22 folderXML.appendChild(xmlChild.children [0]);

23 }

24 block.miniworkspace.xml = folderXML;

25 }

26 var blockX = parseInt(xmlChild.getAttribute(’x’), 10);

27 var blockY = parseInt(xmlChild.getAttribute(’y’), 10);

28 if (!isNaN(blockX) && !isNaN(blockY)) {

29 block.moveBy(Blockly.RTL ? width - blockX : blockX , blockY);

30 }

31 }

32 }

33 },

34 function (result , timeDiff) {

35 Blockly.Instrument.stats.domToWorkspaceCalls ++;

36 Blockly.Instrument.stats.domToWorkspaceTime = timeDiff;

37 }

38 );

39 };

Listing J.2: Blockly.Xml.domToWorkspace

1 Blockly.Xml.domToBlockInner = function(workspace , xmlBlock , opt_reuseBlock) {

2 Blockly.Instrument.stats.domToBlockInnerCalls ++;
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3 var block = null;

4 var prototypeName = xmlBlock.getAttribute(’type’);

5 if (! prototypeName) {

6 throw ’Block type unspecified: \n’ + xmlBlock.outerHTML;

7 }

8 var id = xmlBlock.getAttribute(’id’);

9 if (opt_reuseBlock && id) {

10 block = Blockly.Block.getById(id, workspace);

11 // TODO: The following is for debugging. It should never actually happen.

12 if (!block) {

13 throw ’Couldn\’t get Block with id: ’ + id;

14 }

15 var parentBlock = block.getParent ();

16 // If we’ve already filled this block then we will dispose of it and then

17 // re -fill it.

18 if (block.workspace) {

19 block.dispose(true , false , true);

20 }

21 block.fill(workspace , prototypeName);

22 block.parent_ = parentBlock;

23 } else {

24 if (prototypeName == "folder") {

25 //here block is actually a Blockly.Folder () instance

26 block = Blockly.Folder.obtain(workspace ,prototypeName);

27 } else {

28 block = Blockly.Block.obtain(workspace , prototypeName);

29 }

30 }

31 if (!block.svg_) {

32 block.initSvg ();

33 }

34

35 var inline = xmlBlock.getAttribute(’inline ’);

36 if (inline) {

37 block.setInputsInline(inline == ’true’);

38 }

39 var disabled = xmlBlock.getAttribute(’disabled ’);

40 if (disabled) {

41 block.setDisabled(disabled == ’true’);

42 }

43 var deletable = xmlBlock.getAttribute(’deletable ’);
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44 if (deletable) {

45 block.setDeletable(deletable == ’true’);

46 }

47 var movable = xmlBlock.getAttribute(’movable ’);

48 if (movable) {

49 block.setMovable(movable == ’true’);

50 }

51 var editable = xmlBlock.getAttribute(’editable ’);

52 if (editable) {

53 block.setEditable(editable == ’true’);

54 }

55

56 var blockChild = null;

57 for (var x = 0, xmlChild; xmlChild = xmlBlock.childNodes[x]; x++) {

58 if (xmlChild.nodeType == 3 && xmlChild.data.match (/^\s*$/)) {

59 // Extra whitespace between tags does not concern us.

60 continue;

61 }

62 var input;

63

64 // Find the first ’real’ grandchild node (that isn’t whitespace).

65 var firstRealGrandchild = null;

66 for (var y = 0, grandchildNode; grandchildNode = xmlChild.childNodes[y];

67 y++) {

68 if (grandchildNode.nodeType != 3 || !grandchildNode.data.match (/^\s*$/)) {

69 firstRealGrandchild = grandchildNode;

70 }

71 }

72

73 var name = xmlChild.getAttribute(’name’);

74 switch (xmlChild.nodeName.toLowerCase ()) {

75 case ’mutation ’:

76 // Custom data for an advanced block.

77 if (block.domToMutation) {

78 block.domToMutation(xmlChild);

79 }

80 break;

81 case ’comment ’:

82 block.setCommentText(xmlChild.textContent);

83 var visible = xmlChild.getAttribute(’pinned ’);

84 if (visible) {
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85 // Give the renderer a millisecond to render and position the block

86 // before positioning the comment bubble.

87 setTimeout(function () {

88 block.comment.setVisible(visible == ’true’);

89 }, 1);

90 }

91 var bubbleW = parseInt(xmlChild.getAttribute(’w’), 10);

92 var bubbleH = parseInt(xmlChild.getAttribute(’h’), 10);

93 if (!isNaN(bubbleW) && !isNaN(bubbleH)) {

94 block.comment.setBubbleSize(bubbleW , bubbleH);

95 }

96 break;

97 case ’title’:

98 // Titles were renamed to field in December 2013.

99 // Fall through.

100 case ’field’:

101 block.setFieldValue(xmlChild.textContent , name);

102 break;

103 case ’value’:

104 case ’statement ’:

105 input = block.getInput(name);

106 if (!input) {

107 throw ’Input ’ + name + ’ does not exist in block ’ + prototypeName;

108 }

109 if (firstRealGrandchild &&

110 firstRealGrandchild.nodeName.toLowerCase () == ’block ’) {

111 blockChild = Blockly.Xml.domToBlockInner(workspace , firstRealGrandchild ,

112 opt_reuseBlock);

113 if (blockChild.outputConnection) {

114 input.connection.connect(blockChild.outputConnection);

115 } else if (blockChild.previousConnection) {

116 input.connection.connect(blockChild.previousConnection);

117 } else {

118 throw ’Child block does not have output or previous statement.’;

119 }

120 }

121 break;

122 case ’next’:

123 if (firstRealGrandchild &&

124 firstRealGrandchild.nodeName.toLowerCase () == ’block ’) {

125 if (!block.nextConnection) {
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126 throw ’Next statement does not exist.’;

127 } else if (block.nextConnection.targetConnection) {

128 // This could happen if there is more than one XML ’next’ tag.

129 throw ’Next statement is already connected.’;

130 }

131 blockChild = Blockly.Xml.domToBlockInner(workspace , firstRealGrandchild ,

132 opt_reuseBlock);

133 if (! blockChild.previousConnection) {

134 throw ’Next block does not have previous statement.’;

135 }

136 block.nextConnection.connect(blockChild.previousConnection);

137 }

138 break;

139 default:

140 // Unknown tag; ignore. Same principle as HTML parsers.

141 }

142 }

143

144 // [lyn , 10/25/13] collapsing and friends need to be done *after* connections are

made to sublocks.

145 // Otherwise , the subblocks won’t be properly processed by block.setCollapsed and

friends.

146 var inline = xmlBlock.getAttribute(’inline ’);

147 if (inline) {

148 block.setInputsInline(inline == ’true’);

149 }

150 var disabled = xmlBlock.getAttribute(’disabled ’);

151 if (disabled) {

152 block.setDisabled(disabled == ’true’);

153 }

154 var deletable = xmlBlock.getAttribute(’deletable ’);

155 if (deletable) {

156 block.setDeletable(deletable == ’true’);

157 }

158 var movable = xmlBlock.getAttribute(’movable ’);

159 if (movable) {

160 block.setMovable(movable == ’true’);

161 }

162 var editable = xmlBlock.getAttribute(’editable ’);

163 if (editable) {

164 block.setEditable(editable == ’true’);
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165 }

166

167 if (! Blockly.Instrument.useRenderDown) {

168 // Neil’s original rendering code

169 var next = block.getNextBlock ();

170 if (next) {

171 // Next block in a stack needs to square off its corners.

172 // Rendering a child will render its parent.

173 next.render ();

174 } else {

175 block.render ();

176 }

177 }

178 var collapsed = xmlBlock.getAttribute(’collapsed ’);

179 if (collapsed) {

180 block.setCollapsed(collapsed == ’true’);

181 }

182 return block;

183 };

Listing J.3: Blockly.Xml.domToBlockInner
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