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Compilers are foundational to everything we ask our computers to do—applications

can only be as efficient and reliable as the underlying compiler stack that translates

their logic to machine code. But compiler expertise is a finite resource, and engi-

neers may have to choose whether to prioritize adding optimizations for efficiency

or validating their existing features for reliability. This dissertation presents three

systems that use lightweight, practical formal methods to push past this tension

between performance and correctness. The Diospyros compiler combines an effi-

cient term-rewriting strategy, equality saturation, with translation validation to

find correct, fast vectorizations for specialized linear algebra tasks on digital signal

processors. The Kani verifier for Rust leverages compiler invariants to improve

the performance of dynamically dispatched methods in a satisfiability-solver-based

model checker for low-level systems code. Finally, the VeriISLE engine uses an-

notations to automatically verify machine code generation in Cranelift, a popular

production compiler infrastructure for WebAssembly where miscompilation bugs

can cause serious security vulnerabilities. In sum, these projects point to a fu-

ture where formal methods help us build compilers for fast and reliable computer

systems.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Compilers are foundational to all of computing, but especially to low-level systems

software. Compilers must consume an ever-increasing range of new high-level pro-

gramming languages yet still produce high-performance machine code tailored to

the specific target hardware. The resource constraints in the domain of systems

programming mean that programmers must be especially aware of how their code

interacts with the underlying compiler stack. A compiler must generate machine

executables that meet performance demands—it must produce, for example, fast

machine code that does not use excess memory. The machine executables must

also be correct—they should exactly capture the intention of the high-level pro-

gram, without introducing any new bugs or unexpected behavior. Conventional

wisdom posits a tension between these two goals of performance and correctness.

This tension is typically not explicit—engineers are unlikely to consciously

choose slower or more buggy, incorrect systems for their software. Instead, within

a given software system, developers must choose priorities: should they focus their

effort on validating the implementation they already have, or on designing new

optimizations for performance improvements? The implicit choice between cor-

rectness and efficiency is also present when engineers choose an implementation

language and compiler. How much a given language focuses on specialized per-

formance characteristics is often inversely proportional to how easy it is to write

correct code within that language. The choice between prioritizing efficiency or

correctness is one of the core challenges within systems programming.
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This dissertation pushes on this performance/correctness dichotomy by using

practical formal methods. My thesis is that compiler stacks can use lightweight

(i.e., mostly automated) formal methods to improve the development process for

low-level systems programming—enabling software that is both efficient and cor-

rect. The work in this dissertation is designed to be feasible for real-world, pro-

duction deployments where good performance is a first-order priority.

1.2 Background and Context

Systems programming languages enable efficiency in resource-constrained settings,

but the low-level details they expose can make it hard to produce correct, bug-

free software. Systems programming consists of writing software that interfaces

between application-level programs that users directly touch (e.g., a photo-editing

application, a word-processor, a website) and the underlying hardware (e.g., a

laptop computer, a higher-powered sever, an embedded systems chip on a mobile

device). Systems programming is closely tied to resource consumption within the

underlying hardware: typical goals include minimizing run time (the time for a

program to run on a specific hardware platform), memory (the storage memory a

program needs to execute beyond the input data size), or energy consumption (the

amount of electricity needed to run a program on a specific hardware instantiation).

Compiler engineering is an instance of systems programming. Compilers that

translate programs to machine code must be intimately tied to the details of the

underlying hardware instruction set architecture, or ISA. Because the vast majority

of programs are written in high-level languages, the performance characteristics

achieved by compilers impact nearly every piece of running software.
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Compilers typically translate programs along a series of data representations,

starting with formats closer to the source code and moving to increasingly low-level

formats closer to the machine code. The data format used for the core analysis

of the compiler is called an intermediate representation, or IR. The component of

the compiler that translates between the source code and the core intermediate

representation is called the front end; the analyses and optimizations that occur

on the IR itself make up the mid end; and the final stage of the compiler that

translates to machine code is the backend. This dissertation primarily focuses on

the mid end and backend of compilers used in production.

Formal methods—rigorous mathematical techniques applied to model real

world systems—have a long history in aiding compiler construction and

low-level programming. Some of the earliest foundational results in com-

puter science are built on reasoning about program and compiler correct-

ness [McCarthy and Painter(1966), Milner and Weyhrauc(1972), Hoare(1969),

Morrisett et al.(1999)]. In 2009, the CompCert compiler for a large sub-

set of the C systems programming language demonstrated that it was

possible to fully mechanize (in the proof assistant Coq) a realistic com-

piler [Leroy(2009a)]. Ongoing research on compiler correctness falls into two

primary thrusts: similar efforts for foundational verification of compilers us-

ing interactive proof assistants [Leroy(2009b), Tan et al.(2019), Fox et al.(2017),

Watt(2018), Ringer et al.(2020)], and more lightweight verification and syn-

thesis of specific compiler components using more automated formal meth-

ods [Lopes et al.(2015), Brown et al.(2020), Newcomb et al.(2020)]. While foun-

dational verification with interactive proof assistants typically yields a smaller

trusted compute base, such efforts often take many person-years of effort from

academic experts [Stewart et al.(2015)] and require the compiler to be co-designed
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from the ground up with verification in mind. Lightweight techniques trade off the

level of assurance with the promise of more feasible applications to existing pro-

duction compiler infrastructures. This dissertation follows in this second vein, with

a focus on compilers for systems programming applications where performance is

especially critical.

1.3 Contributions and Organization

This dissertation proceeds with three distinct technical chapters, each covering a

different software system that leverages lightweight formal methods. Finally, we

conclude and discuss future directions.

1.3.1 A Vectorizing Compiler with Equality Saturation

Chapter 2 addresses the question of how lightweight formal methods can be used in

embedded systems to produce optimized, correct code without tuning from expert

programmers. Formal methods are especially powerful for reasoning about embed-

ded systems, where correctness is difficult to achieve in the presence of complex,

domain-specific hardware. Energy-constrained hardware, such as mobile devices,

employ specialized processors called digital signal processors (DSPs). To maintain

low latency with low power usage, DSPs rely on vector instruction set architectures

(ISAs) that amortize the cost of a machine instruction (e.g., an add) across mul-

tiple lanes of distinct values—but require either the programmer or the compiler

to group independent instructions. To target a vector ISA, either the program

itself or a vectorizing compiler needs to group together independent instruction
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uses. Traditional vectorizing compilers use heuristics to find such groupings, e.g.,

by analyzing loops over large matrices. However, some DSP applications require

processing small, fixed-size matrices (such as 3ˆ5) that do not match up with the

number of vector lanes (e.g., a small power of 2). When existing compilers fail to

group these instructions, expert systems programmers manually specify vectoriza-

tion. The key insight of our compiler, called Diospyros, is to use an automated

equality graph or e-graph solver to find these irregular groups without explicit

programmer direction.

In our DSP-vectorization problem, an algorithm that greedily grouped instruc-

tions would preclude more optimal groupings. Our solution is instead a set of

vectorizing rewrite rules that are fed into an e-graph solver to compare many

equivalent solutions. These rules are written once for a specific hardware target,

removing the dependency on an expert programmer for each new program and

matrix configuration. Users write new programs at a high level without any vector

instructions, and Diospyros emits size-specific vectorized code. Diospyros has a

translation validation mode that uses an additional solver to show input and out-

put program equivalence. Our empirical evaluation demonstrates that Diospyros

produces code that is on average 3.1ˆ faster than existing DSP libraries.

1.3.2 Using Compiler Invariants to Improve Verification of

Systems Code

Chapter 3 reverses the relationship between formal methods and systems compil-

ers, asking: can we use compiler invariants to help scale formal methods? Kani is a

verifier to check safety properties—like the absence of run-time crashes or assump-
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tion violations—in components of production Rust code, including pieces of the

Firecracker hypervisor [Agache et al.(2020)]. The key insight of this chapter is that

Kani can leverage invariants from the Rust compiler’s intermediate representation

to improve the correctness and verification latency for code that uses dynamic dis-

patch. Dynamic dispatch is a powerful language design strategy that determines

at run time which of several possible functions to invoke—but its use complicates

formal reasoning about the program. For example, in most object-oriented lan-

guages, dynamic dispatch is used to determine the mostpecific subclass on which

to call a method. In Rust, dynamic dispatch is used in conjunction with trait

objects, which define shared interfaces across different types.

In this chapter, we show (1) that existing Rust verification tools fail to handle

all cases of dynamic dispatch, and (2) how to improve verification performance via

a new strategy for lowering dynamic calls. Because the Rust standard library and

roughly 70% of commonly used Rust libraries use dynamic dispatch, their failure

to handle this language feature limits the applicability of otherwise state-of-the-art

verification tools for Rust. We describe how to translate dynamic dispatch in Rust

to a verification engine and how to substantially improve verification performance.

Our open-source tool, Kani, uses the Rust compiler’s invariants on trait object cre-

ation to limit the number of possible targets to dynamic dispatch calls, improving

the verification latency by up to 15ˆ in a case study from the Firecracker hyper-

visor. This chapter highlights the virtuous cycle between compilers and formal

methods research: formal methods help us build better compilers, and compiler

expertise can scale the impact of formal-methods-based tools.
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1.3.3 Lightweight Verification for Instruction Selection

Chapter 4 addresses how lightweight formal methods can improve the reliability

of high-value, high-risk components in large production compiler systems. In this

chapter, we verify the rewrite-based instruction lowering of the Cranelift compiler

infrastructure. Cranelift is a popular engine that compiles WebAssembly (among

other languages) to optimized machine code. Compiler correctness is especially

critical in the context of WebAssembly to prevent malicious, untrusted client code

from exploiting compiler bugs to break security guarantees [Johnson et al.(2021)].

Cranelift uses a unique approach for selecting ISA instructions: instead of an

ad-hoc matching system, Cranelift has an expressive domain-specific language,

called ISLE, for polymorphic rewrite rules that use pattern matching to choose

ISA instructions.

In this chapter, we present VeriISLE, a framework to verify lowering rules in

ISLE. VeriISLE’s key selling point is its modularity—VeriISLE includes an anno-

tation language that allows users to add concise semantics of individual terms to

be added alongside definitions of the term themselves. We provide annotations to

automatically verify rules that cover WebAssembly 1.0 support for integer opera-

tions in the ARM aarch64 ISA backend. We show that VeriISLE can reproduce

3 known bugs (including a 9.9/10 severity security issue), identify 2 previously-

unknown bugs and an underspecified compiler invariant, and help analyze the

root causes of a new bug. VeriISLE is developed through close collaboration with

Cranelift engineers and we are currently working to merge VeriISLE into the pro-

duction Cranelift repository. To our knowledge, VeriISLE is the first formal verifi-

cation effort for the instruction-lowering phase of an efficiency-focused production

compiler.
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CHAPTER 2

DIOSPYROS: A VECTORIZING COMPILER WITH EQUALITY

SATURATION

2.1 Introduction

Compute-heavy embedded sensing applications, from augmented reality to 5G net-

working, rely on digital signal processors (DSPs). DSPs target power- and energy-

constrained domains with real-time performance targets, so their design optimizes

for power efficiency over programmability and software compatibility. Their simple

in-order cores help meet strict real-time deadlines but also mean that unoptimized

code performs poorly. Unlike modern superscalar CPUs, DSPs cannot afford com-

plex hardware with out-of-order execution that would automatically extract good

performance even from simple sequential code. For performance, DSP architec-

tures instead expose Very Long Instruction Word (VLIW) and vector instruction

sets with exotic architecture-specific extensions. These instruction sets offload the

burden of parallelization onto the compiler and programmer.

Scalar 
Program

Abstract 
Vector DSL

Optimized 
Vector DSL

Optimized
C++ Intrinsics

Symbolic 
Evaluation

Equality 
Saturation

Backend 
Optimization 
& Lowering

Translation 
Validation

for (i=0; i<N; i++)
    c[i] = a[i] + …;

(List (+ (Get a 0) …)
      (+ (Get a 1) …)
      …)

(VecAdd (Vec …)
        (Vec …))

vec_add(a_0, b_0);

§3.1 §3.2–3.4 §4

§3.4

Figure 2.1: The Diospyros compiler workflow. Diospyros first lifts scalar input
programs into a high-level DSL via symbolic evaluation. Diospyros then searches
for equivalent optimized programs using equality saturation. Finally, Diospyros
lowers the optimized program to C++ with target-specific intrinsics for compilation
with a DSP toolchain.
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DSP applications typically rely on on two categories of computational kernels1:

(1) large-scale kernels operating on high-dimensional data (much larger than the

machine’s vector width), and (2) small-scale kernels operating on low-dimensional

data (on the order of the vector width). In an industrial context, the distribu-

tion of kernels tends to be bimodally distributed: many have small dimension-

ality („3–6), and the remaining are much larger („100–1000). While compiler

toolchains and vendor libraries for DSPs often focus their attention on large-scale

kernels—shipping linear algebra libraries tuned for large, dense operations—small-

scale kernels still consume a non-trivial portions of the end-to-end performance

of many emerging DSP applications. Some DSP applications are bottlenecked by

small-scale kernels as part of the “last mile” of a larger computation. In other

words, a variety of small kernels impose an Amdahl limitation [Yavits et al.(2014),

Eyerman and Eeckhout(2010), Paul and Meyer(2007)] that yields diminishing

returns from speeding up just the large-scale loops. Other applications,

such as simultaneous localization and mapping (SLAM) [Mur-Artal et al.(2015),

Mur-Artal and Tardós(2017), Sumikura et al.(2019), Strasdat et al.(2011)] and

structure from motion [Sweeney(2016)], have many components that are domi-

nated entirely by small-scale kernels.

Compiling efficient small-scale kernels is challenging even for state-of-the-

art compiler techniques because the best performance requires complex data

movement strategies that are beyond the scope of most automatic vectoriza-

tion. Moreover, DSP architectures are extremely diverse: they offer per-

application instruction set customization and can even support custom propri-

etary ISA extensions [Gonzalez(2000)]. As a result, DSP engineers still man-

1Here, we define a kernel to be a function that consumes one or more multidimensional
input matrices and produces one or more multidimensional output matrices. A kernel can be
implemented as multiple nested source-level functions.

10



ually apply device- and kernel-specific optimizations by hand-writing vector in-

trinsics [Yotov et al.(2003), Mainland et al.(2013), Alvanos and Trancoso(2016)].

This manual effort does not scale with the plethora of kernels and target architec-

tures. For example, products and convolutions of small 3 ˆ 3 and 4 ˆ 4 matrices

are commonplace in various machine perception applications, but the most effi-

cient implementations for these two sizes are very different. Specialized kernels

for each size can vastly outperform general implementations in linear algebra li-

braries [Spampinato et al.(2018), Kyrtatas et al.(2015)].

This chapter designs a compiler, Diospyros, that aims to compete with

manual tuning by DSP experts while baking in minimal assumptions about

the target hardware. Diospyros frames compilation as a search problem in a

space of candidate programs. It defines this search space using a system of

rewrite rules that encompass both high-level functional specifications and low-

level device-specific instructions. Crucially, the resulting program space in-

cludes implementations that use arbitrary indexing to express complex data

movement patterns. Unlike traditional approaches to general-purpose vectoriza-

tion [Larsen and Amarasinghe(2000)], Diospyros focuses on using the shuffle and

select instructions common in DSPs to implement the irregular data movement

necessary to pack as much work as possible into vector lanes.

Figure 2.1 shows the Diospyros compilation workflow. Diospyros takes a pro-

gram in a scalar, imperative language and lifts it to a high-level vector DSL us-

ing symbolic evaluation. The core optimization engine is an exhaustive search

in a restricted space of candidate programs from this DSL using equality satu-

ration [Joshi et al.(2002), Tate et al.(2009), Willsey et al.(2021)]. Most compilers

apply rewrite rules in a fixed order, which offers predictable compilation but sac-
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rifices optimality. Equality saturation effectively applies all rewrite rules simul-

taneously by representing the input program as an E-graph [Nelson(1980)] and

performing congruence closure using the rewrite rules as an equivalence relation.

The saturated E-graph compactly represents the entire space of candidate pro-

grams, from which Diospyros can extract the most efficient one according to an

abstract cost model. After extracting the optimal program, Diospyros lowers it to

C vector intrinsics for code generation via a backend DSP compiler.

We implement Diospyros to target Tensilica DSPs and show that it can compile

kernels that outperform optimized library functions from the Tensilica SDK by a

geometric mean speedup of 3.1ˆ. Compared to one expert-written kernel hand-

tuned for a fixed matrix size, Diospyros produces code within 8% of the expert per-

formance within 2.2 seconds of compilation time. To show that Diospyros-compiled

kernels offer end-to-end speedups on realistic applications, we integrate them into

code from Theia [Sweeney(2016)], an open-source computer vision library for struc-

ture from motion (SFM). The Diospyros version of this application performs 2.1ˆ

faster on our selected functionality than Theia’s original implementation, which

uses the Eigen template library for linear algebra [Guennebaud et al.(2010)].

This chapter’s contributions include: (1) a strategy for using symbolic eval-

uation and equality saturation to search for SIMD implementations of high-level

specifications, (2) Diospyros, an end-to-end compiler design that uses the rewrite

system to optimize computational kernels for DSP architectures, and (3) an eval-

uation on a range of realistic DSP computations and a commercial DSP target

showing performance improvement over optimized baselines.
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2.2 Motivating Example

This section shows how an example DSP kernel poses challenges to traditional

compilers and how hardware-specific manual tuning can outperform them. We

give an overview of how Diospyros’s design can mimic the hand-tuning process.

Consider optimizing a fixed-size matrix convolution for a DSP. Embedded DSP

applications typically rely on specialized kernel implementations for fixed, small

data sizes—for example, a convolution with a 3ˆ5 input matrix and a 3ˆ3 filter:

for (oRow = 0; oRow < 5; oRow ++)

for (oCol = 0; oCol < 7; oCol ++)

for (fRow = 0; fRow < 3; fRow ++)

for (fCol = 0; fCol < 3; fCol ++) {

fRT = 3 - 1 - fRow; fCT = 3 - 1 - fCol;

iRow = oRow - fRT; iCol = oCol - fCT;

if (iRow >= 0 && iRow < 3 &&

iCol >= 0 && iCol < 5)

o[oRow][oCol] += in[iRow][iCol] * f[fRT][fCT];

}

The outer loops run 5 and 7 times because they iterate over the output matrix.

This convolution “pads” the input matrix at the boundaries and produces a slightly

larger output matrix.

In this example, we will optimize this convolution for the Tensilica Fusion

G3 DSP [Cadence Design Systems, Inc.(2020)], which has a 4-wide floating-point

SIMD vector unit. SIMD instructions are critical in DSP programming for both

performance and efficiency: they both enable parallelism and amortize the energy
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cost of fetching and dispatching instructions. While statically specifying the sizes

allows Tensilica’s vectorizing compiler to improve on this naive for-loop-based

implementation by 1.6ˆ, the best implementation we have found with Diospyros

uses machine-specific vector intrinsics to achieve a further speedup of 22.9ˆ. We

explore why and how this gap arises in general for this category of DSP kernels,

where the problem dimensions are close to the vector width. Namely, for these

kernels, boundary conditions make up a large proportion of the kernel’s work,

which hinders straightforward approaches to parallelization.

Traditional automatic parallelization. Two commonplace compiler tech-

niques for vectorizing sequential code are loop-level vectorization and superword-

level parallelism (SLP) optimizations [Larsen and Amarasinghe(2000)]. For 2D

convolution, the index math for transposing the filter (fRT and fCT) and the if

for the boundary conditions pose a problem to loop-level vectorization. While

loop-level vectorization works well when the data dimensions are large enough

that there is a steady state that admits processing in 4-wide chunks, smaller loops

do not have such a steady state. In this convolution example, no loop executes

more times than twice the vector width—so every loop iteration is a boundary

condition.

Because the array sizes for our problem are fixed, a compiler could

unroll the loops and apply non-loop vectorization techniques such as

SLP [Larsen and Amarasinghe(2000)]. And indeed, specializing the array sizes

leads to the aforementioned 1.6ˆ speedup over a version with variable array sizes.

However, this approach still leaves some performance on the table. Because the

matrix dimensions (3 ˆ 5 and 3 ˆ 3) are close to the machine’s vector width (4),

SIMD instructions do not apply “cleanly” to the input arrays. Furthermore, the
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Figure 2.2: An ISA-specific shuffle instruction that takes three arguments—two
input vectors and an index vector—and produces a single output vector with the
specified combination of values. Experts can use similar instructions to orchestrate
complex data movement strategies.

memory accesses to f are not contiguous, meaning that a simple vector load will

not suffice to enable vectorized arithmetic. The Tensilica compiler’s vectorization

pass fails to find perfectly aligned runs of 4 identical operations, and it does not

attempt to gather or shuffle disparate values to fill a vector. Alternatively, the if

for the boundary condition means that a straightforward vectorized version will

need to use predicated operations, wasting some potential computation bandwidth.

Traditional vectorization optimizations rely on regularity in data movement and

computation that is not present in specialized DSP kernels like this one, where

loops are imperfect and data sizes are not much larger than the vector width.

Hand tuning. Instead, an expert programmer can use the Fusion G3’s special

instructions for data movement to pack computation into the vector lanes. The

DSP supports gather/scatter and shuffle operations that pack data irregularly into

vector registers for subsequent regular processing. For example, this intrinsic call:

int indices [4] = {1, 2, 0, 5};

xb_vecMx32 vec3 = PDX_SEL_MX32(vec1 , vec2 , indices);
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computes a new 4-wide vector value by selecting specific hard-coded indices

from the concatenation of two other vectors, vec1 and vec2, as illustrated in Fig-

ure 2.2. The programmer can use this strategy to implement tactics for gathering

data to fill vector lanes for later computation, like this multiplication:

xb_vecMx32 vec4 = PDX_MUL_MX32(vec1 , vec3);

With judicious use of vector intrinsics and manual derivation of index operands,

an expert implementation can surmount the limitations of traditional auto-

vectorization. A manually tuned kernel can be an order of magnitude faster than

the automatically parallelized version. However, the tuning required is specific

to both the Fusion G3 target and the specific specialized size of the convolution

kernel. A different vectorization strategy with completely different shuffle indices

will be optimal for a 4ˆ 4 filter, for example.

Vectorization via rewriting. Diospyros uses term rewriting to search for DSP

vectorization strategies that exploit this kind of irregular data layout techniques

to optimize for vector unit utilization. Our system starts with an imperative

reference implementation and, using symbolic evaluation (Section 2.3.1), extracts

a specification describing the value to compute for each element of the kernel’s

output(s). For our convolution example, the specifications for the first four values

of the output matrix are:

i0,0 ˆ f1,1 ` i0,1 ˆ f1,0 ` i1,0 ˆ f0,1 ` i1,1 ˆ f0,0

i0,0 ˆ f1,2 ` i0,1 ˆ f1,1 ` i0,2 ˆ f1,0 ` i1,0 ˆ f0,2 ` i1,1 ˆ f0,1 ` i1,2 ˆ f0,0

i0,1 ˆ f1,2 ` i0,2 ˆ f1,1 ` i0,3 ˆ f1,0 ` i1,1 ˆ f0,2 ` i1,2 ˆ f0,1 ` i1,3 ˆ f0,0

i0,2 ˆ f1,2 ` i0,3 ˆ f1,1 ` i0,4 ˆ f1,0 ` i1,2 ˆ f0,2 ` i1,3 ˆ f0,1 ` i1,4 ˆ f0,0
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Here, the first expression is smaller because of the kernel’s boundary condition.

Diospyros uses a term rewriting system to find vectorization opportunities across

these mathematical expressions. For example, the vec_multiply_accumulate rule

can apply here to show that the above outputs are equivalent to expressing the

last product in each element as a fused multiply–accumulate vectorized operation,

VecMAC:

(VecMAC (...)

(Vec (Get I 6) (Get I 7) (Get I 8) (Get I 9))

(Vec (Get F 0) (Get F 0) (Get F 0) (Get F 0)))

Vec and Get are ISA-agnostic data movement abstractions that represent accessing

the specified indices of a memory (with 2D arrays flattened to 1D access). Our

full vector domain specific language is described in Section 2.3.1 and shown in

Figure 2.3.

Due to the commutativity and associativity of ` and ˆ, there are many possible

shuffles a programmer could use to generate valid VecMAC operations. Diospyros

uses an equality saturation approach to consider many possible shuffles—rather

than applying destructive rewrites, as a traditional compiler would—and selects

the pattern best suited to an abstract model of our architecture’s data movement

instructions. For example, here each Vec references the elements of only a single

input array, which can be implemented with in-register data movement.

When targeting the Fusion G3, Diospyros produces this code for the vectorized

expression:

shuf_I = PDX_SEL_MX32(I_4_8 , I_8_12 , [6, 7, 8, 9]);

shuf_F = PDX_SHUF_MX32(F_0_0 , [0, 0, 0, 0]);

PDX_MAC_MFX32(out_0_4 , shuf_I , shuf_F);
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The full implementation that Diospyros generates for this problem size is 22.9ˆ

faster than a naive fixed-size implementation and 4.5ˆ faster than an optimized

vendor library kernel.

2.3 Rewriting for Vectorization

Our core vectorization formulation uses equality saturation [Tate et al.(2009)] to

search for optimized implementations. This section describes the optimization

workflow. Programmers write an imperative reference implementation using scalar

operations, symbolic evaluation lifts this to an abstract vector DSL, then Diospyros

searches for an optimal vectorized program using an equality saturation engine—

trading off efficiency and completeness in the search. Next, Section 2.4 shows how

Diospyros compiles the optimized program back to the imperative DSL to produce

efficient code for the DSP target.

2.3.1 Defining and Lifting Specifications

Diospyros takes as input scalar programs written in a simple imperative language

with first-class matrix and vector objects and operations, implemented as an em-

bedded Racket DSL. For example, this code specifies a simple vector-vector add:

(define (vector -add -spec A B n)

(vec -decl 'A n 'input)

(vec -decl 'B n 'input)

(define C (make -vector n))
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(for ([i n])

(vector -set! C i

(add (vector -ref A i)

(vector -ref B i))))

C)

Here, A and B are vectors of input data and n is a compile-time parameter that

determines the input size.

This input language is both convenient to write and straightforward to compile

to executable code for use in validation or testing. It supports arbitrarily complex

indexing expressions and control flow, as long as they are independent of the input

data. The input language provides the usual scalar arithmetic operations, such as

+, but users can also define custom scalar functions to reflect a given target DSP

and application.

While we could optimize this language directly (in the spirit of De-

nali [Joshi et al.(2002)]), doing so would conflate details of the imperative imple-

mentation with the underlying abstract mathematical computation. To focus on

the latter and simplify the search, Diospyros first lifts imperative input programs

into a mathematical representation. It symbolically evaluates the input program

using Rosette [Torlak and Bodik(2014)], which extends Racket DSLs with symbolic

evaluation support.

The symbolic evaluation step produces an expression in Diospyros’s vector DSL,

shown in Figure 2.3. The vector DSL includes both scalar and vector versions of

common arithmetic operations (`, ´, ˆ, etc.), as well as operations to initialize

vectors with literals or variables and to extract individual vector lanes. The lifting
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xprogy ::= (List xexpry`) | xexpry

xexpry ::= xscalary | xvectory

xscalary ::= xintegery | xvariabley
| (+ xscalary xscalary) | (- xscalary xscalary) | (* xscalary xscalary)
| (/ xscalary xscalary) | (sgn xscalary) | (sqrt xscalary) | (- xscalary)
| (Get xvariabley xintegery) | (xfuncy xscalary˚)

xvectory ::= (Vec xscalary`) | (Concat xvectory xvectory)
| (VecAdd xvectory xvectory) | (VecMinus xvectory xvectory)
| (VecMul xvectory xvectory) | (VecDiv xvectory xvectory)
| (VecMAC xvectory xvectory xvectory) | (VecSgn xvectory)
| (VecSqrt xvectory) | (VecNeg xvectory)

xfuncy ::= xsymboly

Figure 2.3: Diospyros’s vector DSL. A top-level program is a (possibly singleton)
list of outputs. Expressions operate over both scalars and vectors.

process, however, only produces the scalar subset of the language—the rewriting

system in the next section will use the vector constructs. Lifting supports calls to

user-defined functions by introducing uninterpreted functions. The same symbolic

evaluation engine also powers the translation validation tool that Diospyros uses

to verify its output (see Section 2.3.4).

To expose vectorization opportunities for the rewriting system, the lifting pro-

cess converts matrix and vector outputs into a single List output term, with one

element for each value in the program output. For example, the vector-vector add

above with n “ 2 lifts to this expression:

(List

(+ (Get a 0) (Get b 0))

(+ (Get a 1) (Get b 1)))

Here, Get is list access and List constructs a new output list holding the two
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elements of the output vector.

2.3.2 Rewriting Strategy

To vectorize the lifted program in the abstract DSL, Diospyros uses a family of

built-in (though user-extensible) rewrite rules. The key equivalence that enables

vectorization is that the rewrite rules consider a List to be equivalent to a concate-

nation of fixed-size vectors. For example, Diospyros can rewrite our vector-vector

add with n “ 4 and a vector width of two this way:

(List (+ (Get a 0) (Get b 0))

(+ (Get a 1) (Get b 1))

(+ (Get a 2) (Get b 2))

(+ (Get a 3) (Get b 3)))

ù

(Concat (Vec (+ (Get a 0) (Get b 0))

(+ (Get a 1) (Get b 1)))

(Vec (+ (Get a 2) (Get b 2))

(+ (Get a 3) (Get b 3))))

Vec constructs a vector from a configurable machine–width number of scalar values

(here, two), and Concat concatenates two vectors into a list. In real DSP code,

they correspond to vector load and store instructions (see Section 2.4). Diospyros’s

rewrite rules can pad lists with zeros if their lengths are not a multiple of the vector

width.

This rewriting into vector-sized chunks creates opportunities to use vectorized

computation. The rewrite system finds Vec expressions that contain similar scalar
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expressions and replaces them with their vectorized equivalents. For example, the

rule for introducing vectorized add instructions, VecAdd:

(Vec (+ a b) (+ c d)) ù (VecAdd (Vec a c) (Vec b d))

applies twice to the example above, producing:

(Concat (VecAdd (Vec (Get a 0) (Get a 1))

(Vec (Get b 0) (Get b 1)))

(VecAdd (Vec (Get a 2) (Get a 3))

(Vec (Get b 2) (Get b 3))))

Here, the indices in the Get expression determine the data movement strategy

required for this program. In this case, the pairs of indices 0, 1 and 2, 3 can

each be implemented by a vector load without additional data movement. This

example is now fully vectorized because all Vec expressions contain simple memory

lookups and no scalar computations expressions remain.

Diospyros’s code generation backend (Section 2.4) produces DSP code from

this vectorized program by emitting C intrinsics resembling this pseudocode:

vecreg a_0_2 = load(a, 0, 2);

// ...

vecreg b_2_4 = load(b, 2, 2);

vecreg add_1 = vec_add(a_0_2 , b_0_2);

vecreg add_2 = vec_add(a_2_3 , b_2_4);

store(out , add_1 , 0, 2);

store(out , add_2 , 2, 2);
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While this simple example has perfectly aligned vector accesses, most realistic code

requires nontrivial data movement to fill the vector registers. Diospyros’s back-

end consumes these Vec expressions to produce actual loads and data movement

instructions based on the high-level strategy found by the rewrite engine. During

code generation, the backend selects vector shuffle code to implement each given

Vec expression. Similarly, real code mixes both vector and scalar computation;

Diospyros generates a mixture of both.

2.3.3 Searching for Rewrites

In general, applying the rewrite rules directly (like a traditional compiler) does not

promise optimality—we must be sure to apply the right rules in the right order

to find the optimal program (with respect to our rule set). This section describes

how Diospyros searches the space of all rewrite rule applications by representing

the lifted program as an equality graph (E-graph) [Nelson(1980)] and using equality

saturation [Tate et al.(2009)] for efficient search.

Equality saturation. An E-graph is a data structure for efficiently representing

a large set of terms and equivalences between them. The nodes of an E-graph

are function symbols or terminals, and subgraphs represent terms. Each node is

associated with an equivalence class, and the E-graph guarantees that two nodes

are in the same equivalence class if and only if the program terms rooted at them

are equivalent. When used for program optimization, the equivalence relation is

program equivalence.

Initially, the E-graph represents only one program and its sub-terms (the in-
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Figure 2.4: An E-graph before and after applying a rewrite rule for fused multiply–
accumulate. Solid boxes are nodes and represent program terms. Dashed boxes
represent equivalence classes. After rewriting, the VecAdd and VecMAC terms are
in the same equivalence class.

put program in the abstract DSL). Equality saturation then applies rewrite rules

(program transformations) to the E-graph, which introduces new nodes into the

graph and annotates them with the appropriate equivalence classes to maintain

congruence. For example, this is a rewrite rule for fused multiply–accumulate:

(VecAdd a (VecMul b c)) ú (VecMAC a b c)

Figure 2.4 illustrates the application of this rewrite rule to an E-graph which

initially represents the program (VecAdd v1 (VecMul v2 v3)). Applying the rule

introduces a new VecMAC node into the graph, with the variables v1, v2, and v3

as children, and adds the new node to the equivalence class of the existing VecAdd

node.

Equality saturation iteratively applies all rewrite rules (possibly multiple

times), terminating when no potential rewrite rule application would change the

graph—the graph has saturated—or a timeout is reached. At this point (unless

the timeout is reached), the saturated E-graph represents all programs that could

be produced by applying the rewrite rules in any order. This property allows us

to avoid the phase ordering problem common to compilers.

We use the egg [Willsey et al.(2021)] library for E-graphs and equality satura-
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tion. In egg, a rewrite rule comprises two parts: a searcher that looks for nodes

that can be rewritten, and an applier that applies a rewrite. egg exposes a pattern

DSL to specify simple syntactic rewrites and a Rust API to implement custom

searchers and appliers with more complex logic than simple pattern matching.

Custom matching for vectorization. Simple unary scalar operations can be

vectorized using rules of the form shown in Section 2.3.2. However, DSP kernels

often do not fit exactly within the target architecture’s vector lanes (for example,

a 3 ˆ 3 matrix multiply on an architecture with vector width 4). To vectorize

operations while maximizing hardware utilization, Diospyros provides rewrite rules

that work even when some lanes of a vector computation are empty. For example,

the following concrete rewrite is sound and enables vectorizing an addition with

irregular shape:

(Vec (+ a b) 0 (+ c d) 0) ù (VecAdd (Vec a 0 c 0) (Vec b 0 d 0))

To avoid specifying every permutation of zeros on the left-hand side of this rule,

and repeating this specification for each binary operation, Diospyros uses egg’s

support for custom rewrite rules that go beyond pattern matching. The custom

rule first matches on the outer vector and then identifies whether each lane matches

either the operator pattern (xopy x y) or chosen concrete values (in this case, a

constant zero). Using these custom rules makes it easier to extend Diospyros with

DSP-specific instructions without developing a comprehensive new rewrite rule

family.

Associativity & commutativity. A common challenge in rewrite systems is

handling operators that are associative or commutative (or both). For example,
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we want this rewrite:

(+ (+ a b) 0) ú (+ a b)

to also apply to associative or commutative variants of the LHS such as (+ a (+ b

0)). But applying associative and commutative variants of such rules to saturation

dramatically increases the size of an E-graph; the decision problem of whether two

terms can be unified modulo associativity and commutativity (the AC-matching

problem) is NP-complete [Benanav et al.(1987)]. This theoretical problem is also

a scalability challenge for equality saturation in practice [Nandi et al.(2020)].

Diospyros addresses AC-matching by optionally allowing users to disable as-

sociativity and commutativity rules during saturation. This approach sacrifices

completeness in terms of missing some potential rewrites, but reduces memory re-

quirements and thus allows Diospyros to compile kernels with deeper syntax trees

over associative and commutative operators. To regain some of the power of as-

sociativity and commutativity, we use more complex rewrite rules to selectively

re-enable some limited forms of AC rules that we have found to be profitable in

practice.

For example, consider the following 4-wide vector:

(Vec (+ a0 (* b0 c0))

(+ a1 (* b1 c1))

(+ a2 (* b2 c2))

(+ (* b3 c3) a3))

We would like to optimize the scalar operations in this vector into a single vec-

torized multiply–accumulate. However, without a general commutativity rule for

+, the fourth lane prevents introducing a VecMAC operation. We work around
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this limitation using a custom searcher that matches on each lane independently

with one of several pattern options, and then combines the results. For vector

multiply–accumulate, each lane must match one of these patterns:

(+ a (* b c)) (+ (* b c) a) (* b c) 0

The applier (right-hand side) of this rule collects the arguments into vectors (map-

ping “missing” values to zero) and applies the fused operation:

(VecMAC (Vec a0 a1 a2 a3)

(Vec b0 b1 b2 b3)

(Vec c0 c1 c2 c3))

Unlike an approach that includes AC rules when saturating the E-graph, this cus-

tom searcher approach does not persist its discovered equivalences. This difference

trades off memory for compute: rather than persisting these equivalences in the

E-graph, we re-compute them every time we try to apply the custom searcher. In

practice, we have found this to be a worthwhile trade-off, allowing larger kernels

that previously exhausted the memory of a 512 GB host to successfully compile.

We expect that similar customizations for AC searching would be beneficial in a

variety of domains beyond vectorization.

Floating point accuracy. Diospyros’s rewrite rules are correct with respect to

the real numbers. They do not adhere to strict floating point semantics which,

for example, would not allow associativity in addition or multiplication. Diospy-

ros shares this characteristic with other modern optimizing compilers for compute

kernels that prioritize speed over numerical stability [Ragan-Kelley et al.(2013a),

Kamil et al.(2016)]. We measure floating point error in our evaluation (Section 2.5)

and find Diospyros-generated code to match reference implementations within sev-
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eral decimal places.

2.3.4 Extraction

After equality saturation completes, Diospyros has a single E-graph representing

many programs that are equivalent to the input program (according to the rewrit-

ing system). Each program would be a valid solution to the compilation problem,

but we want to extract the most efficient solution. We cannot explicitly enu-

merate the programs to search for an optimal one—doing so would sacrifice the

compactness of the E-graph representation. Prior equality-saturation-based su-

peroptimizers [Joshi et al.(2002)] extract efficient code by generating cost-related

verification conditions from the E-graph and discharging them with a SAT solver,

but this requires a detailed architecture-specific cost model.

Diospyros extracts an efficient solution from the E-graph using a cost model

that assigns a fixed cost to each operator in the vector DSL. This cost model

reflects the time and energy savings of vectorization as well as the cost of reading

values from registers versus memory. To support efficient extraction from the E-

graph (linear in the number of E-graph nodes rather than the number of candidate

programs), this cost function must be strictly monotonic, i.e., an expression’s cost

is greater than the sum of the costs of its subexpressions. This limitation makes

extraction efficient because it avoids the need to explore all the zero-cost variants

of a candidate expression. While this restriction limits the cost models Diospyros

can express, in our experience we can still extract fast programs, as Section 2.5

demonstrates.

Our cost model for data movement is intentionally high-level—Diospyros as-
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signs a lower cost to shuffles that gather data from a single input array (or zeros)

than to shuffles across different inputs or non-zero scalars. The Fusion G3’s fast,

unrestricted shuffle instruction allows this abstract cost model to serve as a good

proxy for data movement costs. This approach may be a poorer fit for architectures

without support for flexible shuffles (Section 2.6 discusses this limitation further).

Timeouts. Saturating an E-graph guarantees that it captures all possible order-

ings of the rewrite rules. In practice, saturation can be very expensive, and so we

impose both a wall-clock timeout and an E-graph node limit to terminate early.

Diospyros can still produce a solution from a timed-out compilation by applying

the above extraction process to the partially saturated E-graph. Half of our bench-

marks in Section 2.5 time out, and yet most still outperform optimized libraries.

Section 2.5.5 studies the impact of timeouts on the quality of Diospyros’s output.

Translation validation. Diospyros depends on a set of rewrite rules to define

the search space of equivalent programs. The equality saturation engine trusts

these rules; while most rules are simple, an incorrect one can cause Diospyros to

miscompile a program. We address this risk by re-using the symbolic evaluation

engine from Section 2.3.1. We use this engine to optionally perform translation

validation on the final extracted program, using Rosette [Torlak and Bodik(2014)]

to prove that the extracted program is equivalent to the scalar input program for

all possible inputs.

The validation assigns no semantics to the uninterpreted functions that rep-

resent user-defined functions, so programs involving them may produce spurious

validation failures (for example, we would not know that a user-defined square

function only produces non-negative values). The user can optionally provide
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(possibly partial) semantics for user-defined functions by writing a Racket func-

tion, which Rosette lifts to operate on symbolic inputs and uses to validate trans-

lations. Diospyros uses these semantics only at the translation validation stage

and not within the rest of the compiler.

Translation validation removes the equality saturation engine and the rewrite

rules themselves from the trusted computing base of the compiler. However, the

validation is between two programs in the vector DSL, and so both the initial lifting

from imperative code into that DSL and the backend code generation (Section 2.4)

are still trusted. Diospyros’s translation validation models values in the theory of

real arithmetic, rather than with precise floating point semantics. Anecdotally,

we have found translation validation useful when developing and debugging new

rewrite rules and vector DSL extensions.

2.4 Lowering and Code Generation

After extraction from the E-graph, we are left with a vectorized program in an

idealized vector DSL. This section describes how Diospyros compiles this program,

first to a lower-level vector IR and then to C++ specific to the target DSP archi-

tecture.

Abstract vector IR. To capture the essence of vector computation with data

movement, the Diospyros backend defines a machine-independent vector intermedi-

ate representation (IR). At this abstraction level, kernels operate on user-specified

input arrays to produce outputs using an imperative language free of control flow.

The IR includes common vectorized operations such as memory loads and stores,
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arithmetic, and data shuffles, as well as user-defined uninterpreted functions for

both scalar and vector operations. While the IR is at a fairly low level of abstrac-

tion, it abstracts away concrete details of the DSP architecture, deferring them to

a later architecture-specific instruction selection phase (Figure 2.1).

One key challenge to solve at this compilation step is how to translate instances

of Vec in the vector DSL. Vec terms represent vector initializations, and each

vector lane can be populated from an arbitrary memory location. For example,

the quarternion product benchmark we evaluate in Section 2.5 includes a Vec term

in its output of the form:

(Vec (Get a 1) (Get a 2) (Get a 0) (Get a 3))

To initialize this vector, the backend IR includes a vector shuffle operation:

(vec -shuffle inputs indices)

that takes as input an array of indices defining where to move each element of

inputs. The IR does not restrict the possible values of indices, offering the

flexibility to compile vectorization patterns discovered by equality saturation that

require complex data movement. Lowering this instruction to the target DSP

architecture requires selecting an instruction sequence that achieves this desired

movement using the architecture’s available shuffle operations.

IR-level optimization. Diospyros’s compilation flow includes fully unrolling

loop nests, which can create extraneously large programs with redundant terms.

This redundancy is not an issue during equality saturation, because the E-graph

representation implicitly de-duplicates redundant terms. However, a naive lowering

from the high-level vector DSL would include this redundancy and produce kernels
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far too large for resource-constrained targets. The Diospyros backend implements

a local value numbering (LVN) pass to eliminate redundant terms. This pass is

highly effective: for the quarternion product benchmark in Section 2.5, it reduces

the output size from over 100,000 lines of C++ to under 500 lines.

Instruction selection. The final phase of compilation is to perform instruction

selection for a concrete architecture. Diospyros delegates much of this work to

the vendor-supplied DSP compiler toolchain, avoiding the need to integrate deep

target-specific knowledge into Diospyros for each new DSP target architecture.

The lowering phase translates the low-level IR into C++ compiler intrinsics that

are then compiled with the DSP toolchain. The programmer can provide the

name and type signature of target-specific instructions for both scalar and vector

operations.

2.5 Evaluation

Our evaluation has two main components: a demonstration of speedups for indi-

vidual kernels compiled with Diospyros (Section 2.5.4), and a more detailed exam-

ination of an application that can benefit from replacing library calls to fixed-sized

linear algebra kernels with Diospyros kernels (Section 2.5.7).

2.5.1 Implementation

Diospyros currently targets Tensilica’s Xtensa Fusion G3 family of DSP architec-

tures [Cadence Design Systems, Inc.(2020)]. The backend lowers the vec-shuffle

32



instruction in the low-level IR to the Xtensa PDX_SHFL_MX32 (single-register shuf-

fle) and PDX_SEL_MX32 (two-register select) intrinsics. To implement arbitrary

shuffles with more than two registers, Diospyros uses nested select instructions.

Diospyros’s implementation spans two languages. 4,800 lines of Racket, us-

ing the Rosette framework [Torlak and Bodik(2014)], implement the domain-

specific vector languages, lifting, translation validation, and backend compilation

phases. 1,400 lines of Rust implement the rewrite rules and cost model using the

egg [Willsey et al.(2021)] equality saturation library.

2.5.2 Methodology

We report cycle counts from Tensilica’s cycle-level simulator for the Fusion G3

DSP processor [Cadence Design Systems, Inc.(2020)], xt-run. We use use xt-

run’s default memory model, which assumes an ideal, unit-delay memory for all

accesses. The simulator is deterministic, so we report results for a single execu-

tion. We compile all implementations (baseline loops, library-provided functions,

and Diospyros-generated code) with the xt-xcc/xt-xc++ compiler from the Ten-

silica Xtensa SDK at the highest optimization level, -O3.2 We run experiments

on a machine with two Intel Xeon E5-2620v4 CPUs running CentOS 7.6. We

give Diospyros a 3-minute timeout for equality saturation with a node limit of

10,000,000. We run without full associativity and commutativity enabled (as de-

scribed in Section 2.3.3).

2Tensilica also provides a second compiler, called xt-clang++, that is not well-documented
in our version of the Xtensa SDK. Xtensa specifies that xt-clang++ does not include a loop
transformation framework, such as the one in xt-xc++ at the -O3 optimization level; however, it
does perform better on some scalar code due to more aggressive inlining and a different software
pipelining scheduler. We use the better documented, default xt-xc++ compiler.

33



3×3
2×2

2DConv

3×3
3×3

2DConv

3×5
3×3

2DConv

4×4
3×3

2DConv

8×8
3×3

2DConv

10×10
2×2

2DConv

10×10
3×3

2DConv

10×10
4×4

2DConv

16×16
2×2

2DConv

16×16
3×3

2DConv

16×16
4×4

2DConv

2×2
2×2

MatMul

2×3
3×3

MatMul

3×3
3×3

MatMul

4×4
4×4

MatMul

8×8
8×8

MatMul

10×10
10×10

MatMul

16×16
16×16

MatMul

4, 3, 4, 3
QProd

3×3
QR

Decomp

4×4
QR

Decomp

0.25

0.5

1

2

4

8

16

32

S
p

ee
du

p
ov

er
N

ai
ve

(fi
xe

d-
si

ze
)

Naive

Naive
(fixed size)

Diospyros

Nature

Eigen

Figure 2.5: Speedup over Naive (fixed size) in simulated cycles, log scale. Bars
above the blue line indicate a speedup. Naive is a naive loop nest, Naive (fixed
size) is a loop nest with fixed bounds, Diospyros is our system, Nature is a vendor-
supplied library function, and Eigen is a C++ template linear algebra library.

We compare Diospyros with the Nature DSP library included with Tensilica’s

SDK. Nature is optimized specifically for the Fusion G3 using vector intrinsics, so

it performs better than naive C++; however, the library’s performance is limited by

the need to be generic over matrix sizes. Not all sizes have Nature comparisons be-

cause the library often restricts dimensions to multiples of 4 to match the machine

vector width. We also compare with Eigen [Guennebaud et al.(2010)], a portable

(not Xtensa-optimized) C++ template library for linear algebra, where available.

Although Nature and Eigen are the competitive baselines, we also include straight-

forward loop-nest-based implementations for reference: one with parametric sizes

and one with sizes fixed at compile time (with #define). Figure 2.5 normalizes

simulated cycle times as speedups over the fixed-size naive baseline.

2.5.3 Kernel Benchmarks

Table 2.1 lists the benchmark kernels we use, which are inspired by use cases

in computer vision and machine perception. QProd, for instance, is a Euclidean

Lie group product [Strasdat(2015)], which includes quaternion and translational

product components and appears in applications such as pose estimation or camera
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Benchmark Ref. LOC Size Time Memory

2DConv 131 3×3, 2×2 2.2s 145 MB
3×3, 3×3 5.6s 145 MB
3×5, 3×3 30.3s 626 MB
4×4, 3×3 23.8s 370 MB
8×8, 3×3 3m 16s: 3.8 GB

10×10, 2×2 21.6s 401 MB
10×10, 3×3 3m 24s: 4.1 GB
10×10, 4×4 3m 11s: 5.0 GB
16×16, 2×2 1m 8s 1.2 GB
16×16, 3×3 3m 9s: 4.7 GB
16×16, 4×4 3m 57s: 4.4 GB

MatMul 71 2×2, 2×2 1.9s 144 MB
2×3, 3×3 2.2s 136 MB
3×3, 3×3 2.7s 124 MB
4×4, 4×4 5.8s 130 MB
8×8, 8×8 3m 22s: 4.0 GB

10×10, 10×10 3m 30s: 6.0 GB
16×16, 16×16 3m 38s: 4.5 GB

QProd 144 4, 3, 4, 3 6.7s 128 MB

QRDecomp 174 3×3 4m 38s: 2.2 GB
4×4 4h 25m: 35.4 GB

: Equality saturation timed out after 180s.

Table 2.1: Benchmark kernels used to evaluate Diospyros. We list the lines of code
in the reference implementation and show the time and maximum memory used
for compilation, including symbolic evaluation, optimization, and code generation
but not translation validation. 2DConv is a 2D convolution, MatMul is a 2D matrix
multiple, QProd is a quaternion product, and QRDecomp is a QR matrix decom-
position.

models.

The table also shows the total compilation time for each benchmark. While

we set the timeout for equality saturation at just 3 minutes, some benchmarks

take a significant amount of time to do backend optimization and code generation.

QRDecomp at the 4ˆ4 size is a pathological case. The kernel when fully unrolled is

extremely large: the extracted specification alone is a 509 MB text file. As a result,
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the E-graph does not saturate and it finds no vector instructions. The expression is

heavily redundant, so our post-processing optimizations (Section 2.4) take several

hours and gigabytes of memory to remove redundancy before generating output

program, producing only 457 lines of C as output. Here, the performance benefits of

the additional common subexpression elimination enabled by symbolic evaluation

(and exploited by our local value numbering optimization) are enough to beat the

naive and library implementations, even without vectorization. We discuss this

effect further in Section 2.5.6.

2.5.4 Kernel Performance Results

Figure 2.5 compares the Diospyros-generated kernels against straightforward loop-

based implementations (with both parametric sizes and inlined fixed sizes to fa-

cilitate more aggressive -O3 optimizations) and the Nature DSP and the Eigen

library functions. On average, Diospyros-optimized kernels outperform the best

non-expert baseline by 3.1ˆ.

The Diospyros-generated matrix multiply kernels are between 2.7ˆ and 19.3ˆ

faster than the fixed-size naive loop nests. The trends in Figure 2.5 indicate

that even highly-optimized code such as Nature can perform poorly on small ker-

nels, such as the 2 ˆ 2 square matrix product, due to the control overhead of the

parametrized unrolling.

In the case of 2DConv, our example from Section 2.2, Diospyros finds solutions

that are up to 7.5ˆ faster than the library implementations. Nature outperforms

Diospyros on 2DConv at two sizes that are greater than or equal to the vector width:

input sizes 16 ˆ 16 and 10 ˆ 10, with filter size 4 ˆ 4. The Nature library’s 2D
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Figure 2.6: Effect of search timeout on MatMul performance.

convolution makes extensive use of vector intrinsics for loads, stores, and arithmetic

operations; however, its unrolling strategies are not amenable to cases where the

filter size is near but not equal to the vector width.

In the case of matrix multiply, we also have access to proprietary hand-tuned

code written for the Fusion G3 by a DSP expert for a single fixed size, 2 ˆ 3

by 3 ˆ 3. The Diospyros-generated kernel compiles with full equality saturation

in 2.7 seconds and produces run-time performance that is within 8% of the ex-

pert performance (39 vs. 36 cycles). The Diospyros kernel and the expert kernel

perform the same number and type of vector operations (two multiplies and four

multiply–accumulates), but Diospyros’s logic to load elements into registers from

main memory is less efficient. We believe this performance gap could be eliminated

with additional engineering effort in improving code generation.

2.5.5 Timeout Ablation Study

Diospyros’s rewrite engine uses a timeout to emit suboptimal solutions even when

it does not reach full equality saturation. Shorter timeouts stop Diospyros from

completely vectorizing the kernel but still emit an executable C kernel. Figure 2.6
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shows the effect of increasing the timeout on our MatMul benchmark for the largest

size, 10ˆ10 by 10ˆ10. With a 10-second timeout, the Diospyros generated kernel

performs far better than a naive kernel (1,568 cycles), but not as well as the

size-agnostic implementation in the Nature library (1,241 cycles). Increasing the

timeout improves the quality of the generated benchmark, ultimately saturating

the E-graph and finding a kernel that beats even the Nature library taking 847

cycles. This formulation allows programmers to trade off compilation time for

run-time performance of the generated kernel.

2.5.6 Vectorization Ablation Case Study

As the results for QRDecomp at the 4 ˆ 4 size demonstrate, symbolic evaluation

alone enables loop unrolling and common subexpression elimination that yield per-

formance benefits even without explicit vectorization. To isolate the performance

advantage of our vectorization strategy over other factors, we measure perfor-

mance for Diospyros with all vector rewriting rules disabled. Compiling kernels

with Diospyros without these vector-related rules (but with symbolic evaluation,

scalar rewrite rules, and common subexpression elimination) yields code that per-

forms 2.2ˆ better than the best non-Diospyros baseline, compared to 3.1ˆ with

vector rewrite rules. In 4 out of 21 kernels, the non-vectorized code is actually

faster than the Diospyros-vectorized code because the vendor’s compiler can pro-

duce more heavily optimized scalar code. We believe Diospyros could improve on

these cases with a better cost model that reflects the overheads of vector packing

and engineering enhancements to the backend code generation.

38



2.5.7 Application Case Study

We implement a piece of a digital signal processing application that can use

Diospyros-generated kernels to observe their effect in context. Sensing applications

such as structure from motion (SFM) [Sweeney(2016)] are rich with small-scale lin-

ear algebra kernels calls that can become bottlenecks if they are implemented in a

generic way.

This section studies a camera model computation from the Theia open-source

SFM package [Sweeney(2016)], which is representative of the kinds of embedded

vision workloads that are common on DSPs. Theia is well optimized and uses the

popular Eigen [Guennebaud et al.(2010)] library of matrix kernels, but it is not

specifically optimized for DSP architectures. It uses a camera model to define how

points in 3D space project into a 2D image plane captured by the sensor array.

We focus on this initialization function in Theia’s camera model:

bool Camera :: InitializeFromProjectionMatrix(

const int image_width ,

const int image_height ,

const Matrix3x4d projection_matrix)

The core functionality is in DecomposeProjectionMatrix, a function that ini-

tializes camera parameters projecting to a rotation matrix using a Jacobi SVD

decomposition and then decomposing the matrix using RQ decomposition. We

port DecomposeProjectionMatrix to Tensilica’s Fusion G3 DSP. We compare

against a version using single-precision floating-point numbers (the original code

uses double-precision FP, but both the original and our optimized versions are

accurate within 10´6 even with single precision). We found that 61% of the run

39



time was spent on a call to a 3ˆ 3 QR decomposition from the Eigen library.

We substitute a QR decomposition kernel generated by Diospyros for the Eigen

implementation to measure its effect on the overall computation. QR decompo-

sition is a linear algebra kernel that takes as input a square matrix A and finds

a right triangular matrix R and an orthogonal matrix Q such that A “ Q ˆ R.

Both Eigen and our implementation use the Householder algorithm to iteratively

build both outputs, using a series of matrix multiplications along with scalar com-

putations. The number of floating point multiplications is cubic in relation to the

matrix size. We implement QR decomposition with about 170 lines of imperative

Racket. The resulting SMT-based specification has over 65,000 calls to floating

point multiply, demonstrating the complexity of this kernel.

For the complete projection matrix computation, the Diospyros-optimized ver-

sion is 2.1ˆ faster than the original Eigen-based implementation (30,552 vs. 64,025

cycles). The QR decomposition kernel alone is an order of magnitude faster than

Eigen’s implementation (see Section 2.5.4), and these savings translate to a sub-

stantial speedup in the complete computation.

2.6 Limitations and Portability

While Diospyros’s design aims to generalize across DSP architectures, we built the

prototype in this chapter to target the Tensilica Fusion G3 specifically. Aspects

of the rewriting strategy in Section 2.3.2 reflect the Fusion G3’s ISA: namely,

the vector width, the available vector arithmetic operations, and the support for

flexible “shuffle” instructions for data movement. However, Diospyros’s equality

saturation engine is parametric over most of these target details—for example, a
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simple compile-time setting controls the target vector width.

To target a different DSP, a designer would need to add or remove rewrite rules

that reflect the available primitive operations. For example, consider a DSP with

a vectorized fast reciprocal operation. To add support for this instruction, a user

would need to: (1) add a scalar rewrite rule like (/ 1 x) ù (recip x), relying on

existing support for division; (2) inform the rewrite engine that recip has a vector

equivalent, using a rule builder available in the Diospyros library; and (3) add the

target-specific intrinsic to the backend (one to two lines of code to map VecRecip

to the vendor intrinsic).

An important assumption in Diospyros is that the target can support flexible

data movement between vector registers. Its rewrite rules allow unrestricted data

movement during equality saturation, with a relatively abstract cost model that

assigns a higher cost to gathering data across different inputs or from non-zero

scalars. We expect this approach to be most appropriate for architectures with a

flexible “shuffle” instruction that uses an index vector to change positions within a

vector. For architectures without this kind of flexible data movement, the backend

would need to fall back to scalar operations more frequently, which would be more

expensive.

2.7 Related Work

Vectorizing compilers. Classical vectorization techniques—from loop depen-

dency analysis [Allen and Kennedy(1987)] to modern auto-vectorization tech-

niques [Mendis and Amarasinghe(2018), Nuzman et al.(2006), Mainland et al.(2013)]—

typically do not attempt to aggressively shuffle data into irregular patterns. Ex-
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isting techniques prioritize efficient compilation over optimality: they are designed

to run on millions of lines of code but miss vectorization opportunities.

Previous work has used the Halide language [Ragan-Kelley et al.(2013a)]

to target DSPs, but has not supported exploration of a large search space

of irregular data movement strategies [Vocke et al.(2017)]. Other approaches

can generate target-specific shuffles to implement known permutations, but do

not find the permutation strategies themselves [Franchetti and Püschel(2008),

McFarlin et al.(2011)]. Our search strategy can discover novel shuffles and data

movement, automating the labor-intensive hand-tuning process at the cost of in-

creased compilation time.

SLinGen [Spampinato et al.(2018)], a part of SPIRAL [Puschel et al.(2005),

Franchetti et al.(2006)], optimizes small linear algebra kernels by first applying

optimizations like loop reordering and vectorization and then autotuning. Like

SLinGen, Diospyros works at a higher abstraction level to enable optimizations

that would not be apparent at the assembly level. However, our work uses equality

saturation both to avoid hand-crafting specific optimization patterns (including for

custom functional units that are common on DSPs) and to offer higher coverage

of the search space than autotuning.

Program synthesis. Program synthesis techniques can expend compilation

time to discover novel optimized programs. [Barthe et al.(2013)] develop an auto-

vectorizer using inductive synthesis but focus on general-purpose code rather than

linear algebra and so do not generate shuffles. [Cowan et al.(2020)] generate quan-

tized machine learning kernels using syntax-guided synthesis. Their sketches ex-

ploit the reduction structure of these kernels and so cannot invent new data move-
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ment. MSL [Xu et al.(2014)] is a synthesizer that generates bulk-synchronous par-

allel programs. The synthesizer reduces the parallel problem to a sequential one,

uses a syntax-guided synthesis tool [Abate et al.(2018)] to solve the sequential

problem, and then compiles the result to message-passing parallel code.

Swizzle Inventor [Phothilimthana et al.(2019)] infers permutations of data and

computation (swizzles) that are optimized for GPU memory hierarchies. Unlike

Swizzle Inventor, Diospyros has the ability to change the compute code itself (e.g.,

by fusing multiply–accumulates) rather than just the data movement. Swizzle

Inventor also requires users to provide a sketch identifying the sites of possible

swizzles; Diospyros’s rewrite rule system does not require sketching.

Unlike many synthesis techniques, Diospyros has the ability to ex-

tract partial solutions if the synthesis process takes too long. Recent

work [Peleg and Polikarpova(2020)] explores synthesis techniques that are best ef-

fort, returning partially valid solutions. Diospyros’s rewrite rules are sound, and

so the partial solutions it returns are always valid, but the partial solutions are

not provably optimal (even with respect to the limited rewrite rules). This design

allows Diospyros to avoid expensive optimality proofs that can dominate synthe-

sis time [Bornholt et al.(2016)]. Incorporating unsound rewrite rules that can be

repaired at code generation time is an appealing direction for future work.

An earlier version of Diospyros [VanHattum et al.(2020)] relied on syntax-

guided synthesis backed by an SMT solver. It generated optimized linear algebra

kernels but encountered scaling issues even on small (2 ˆ 2) kernels because it

needed to reason about bit-level instruction semantics during synthesis. Diospyros

now abstracts away arithmetic semantics and focuses on vectorization by using

term rewrite instead, so it can scale to kernels 10ˆ larger than the SMT-based
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version. In addition, the previous version of Diospyros required a full program

sketch in addition to a specification for each kernel. The current Diospyros system

allows users can reuse the same rewrite rules across different kernels.

Term rewriting systems. Diospyros’s optimization approach is based on equal-

ity saturation [Tate et al.(2009), Willsey et al.(2021)], a technique for optimiz-

ing compilation using equality graphs (E-graphs). Equality saturation allevi-

ates the phase ordering problem of traditional compilers by applying rewriting

rules to an E-graph, implicitly capturing all possible phase orderings. Recent

work expands equality saturation to new compilation domains such as CAD mod-

els [Nandi et al.(2020)]. These approaches exploit the insight that equality satura-

tion does not require backtracking so it admits an asymptotically more efficient E-

graph implementation [Willsey et al.(2021)]. Diospyros instantiates this approach

for vectorization, using equality saturation to exhaustively search candidate vec-

torized programs that include data movement.

Denali [Joshi et al.(2002)] is an equality saturation-based superoptimizer for

Alpha assembly code. It saturates an E-graph using assembly-level rewrite rules

and then extracts an optimal program by using a SAT solver to compute a detailed

cost model. Diospyros’s rewriting happens instead over an abstract DSL, which

sacrifices some target-specific optimality in favor of reasoning about data move-

ment; such higher-level optimizations are typically where expert DSP developers

focus their hand-tuning efforts.
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2.8 Chapter Summary

Diospyros combines symbolic evaluation, equality saturation, and translation vali-

dation to build an end-to-end compiler for high-performance DSP code. Diospyros

is extensible: users can bring domain- and architecture-specific insights by adding

new rewrite rules to the equality saturation scheme. A main avenue for future

work is to exploit this flexibility to target more DSP targets and other esoteric,

customizable hardware architectures beyond DSPs.
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We thank Jacob Delgado-López for his implementation contributions and Armin

Alaghi and Max Willsey for early feedback on this work. Many thanks to the

anonymous ASPLOS 2021 reviewers and our shepherd, Shoaib Kamil, for their

detailed feedback.

The work in this chapter was supported in part by the Center for Applica-

tions Driving Architectures (ADA), one of six centers of JUMP, a Semiconduc-

tor Research Corporation program co-sponsored by DARPA. It was also partially

supported by the Intel and NSF joint research center for Computer Assisted Pro-

gramming for Heterogeneous Architectures (CAPA). Support included NSF awards

#1845952 and #1723715. This material was based upon work supported by the

NSF Graduate Research Fellowship Program under Grant No. DGE-1650441. Any

opinions, findings, and conclusions or recommendations expressed in this material

are those of the authors and do not necessarily reflect the views of the National

Science Foundation.

45



CHAPTER 3

KANI: VERIFYING DYNAMIC TRAIT OBJECTS IN RUST

3.1 Introduction

Rust has made significant inroads as a popular safe systems programming lan-

guage over the decade since its release. Stack Overflow has named Rust the “most

loved language” every year since 2016.1 One of the language’s main selling points

is its focus on reliability—the ownership type system is a success story of program-

ming language memory safety research breaking into the mainstream. The borrow

checker eliminates certain high-impact classes of bugs, including null pointer deref-

erences, use-after-frees, and most forms of leaked memory. A team writing safety-

or security-critical code, though, may seek an even higher level of assurance than

what the current type system alone provides.

While Rust’s type system rules out most memory safety bugs in checked safe

code, there remain many ways for execution to go wrong. The language provides

an “unsafe” dialect that allows programmers to bypass restrictions to regain more

expressivity for lower-level regions of code. Even in safe Rust, the type system does

not rule out dynamic panics from out-of-bounds or indexing errors (for example,

consider the well-type-checked snippet let v = vec![1, 2]; v[3]). Finally, en-

gineers may want assurance of functional correctness—the ability to assert specific

properties about the result of a program under all possible inputs.

The Kani Rust Verifier (Kani) is an open-source tool for sound, bit-precise sym-

bolic analysis of Rust programs—initially motivated by use cases at Amazon Web

1https://stackoverflow.blog/2020/06/05/why-the-developers-who-use-rust-love-

it-so-much/
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Services (AWS). In our previous work on symbolic correctness proofs of production

C code, we found that (1) embedding specification into proof harnesses similar to

unit tests, and (2) integration with existing developer workflows were key to broad

impact on software engineering teams [Chong et al.(2020)]. To this end, one of our

primary goals with the Kani project is to support enough of the Rust language sur-

face to seamlessly integrate into large, existing projects. In Section 3.4.2, we show

how Kani performs on components of the open-source Firecracker virtual machine

monitor,2 which provides virtualization for two publicly-available serverless com-

pute services at Amazon Web Services: Lambda and Fargate [Agache et al.(2020)].

We have found an unexpected challenge in Rust language coverage to be cor-

rectly modeling dynamic dispatch through virtual method tables. Rust does not

have classes or class inheritance like other object-oriented languages; rather, traits

are the primary mechanism for defining interfaces and abstracting over implemen-

tations. The official Rust blog states:3

The trait system is the secret sauce that gives Rust the ergonomic,

expressive feel of high-level languages while retaining low-level control

over code execution and data representation.

By default, trait method calls are monomorphized—that is, the compiler statically

resolves which concrete function to call at each function call site (see Section 3.2.1).

However, users can add a dyn keyword to gain the expressivity of dynamic

dispatch to trade-off dynamic run time for improved code size and compilation

times (see Section 3.2.2). Further, Rust’s closures, or anonymous functions, can

also be dynamically dispatched through trait objects. As we show in Section 3.4.1,

2https://firecracker-microvm.github.io/
3https://blog.rust-lang.org/2015/05/11/traits.html
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37% of the 500 most popular Rust crates (packages) explicitly invoke dynamic

dispatch in their source code, and 70% implicitly include code that uses it.

Despite Rust’s minimal runtime, supporting these dynamic trait objects is chal-

lenging because (1) they require non-trivial dynamic dispatch semantics that are

not explicitly specified in any Rust documentation, and (2) they require heavy

use of function pointers, which can be challenging for static analysis and symbolic

execution algorithms [Milanova et al.(2004), Lu and Hu(2019)]. While dynamic

trait objects are easy to avoid in hand-crafted verification examples, their use in

the Rust standard library and throughout realistic, real-world crates motivates

providing full support within our Kani tool. We have also seen in practice that

faithfully modeling dynamic trait semantics causes our verification times to become

intractable due to the large number of function pointers. In Section 3.3.3, we show

how Kani leverages semantic information about traits to restrict the number of

possible targets for function pointers, moving a Firecracker proof from intractable

to completing successfully in 16 minutes.

Verification for Rust is a growing field, but to the best of our knowledge,

Kani is the only symbolic model checking tool that targets Rust’s Mid-level In-

termediate Representation (MIR) and can reason about dynamic trait objects

and dynamic closures. Other verification tools that target MIR either do not

provide soundness guarantees over symbolic inputs (MIRI [Jung et al.(2019)],

MIRAI [Experimental(2021)]) or do not support all cases of dynamic

traits (Prusti [Astrauskas et al.(2019)], CRUST [Toman et al.(2015)], Crux-

MIR [Galois, Inc(2020)]); other tools target LLVM-IR and thus do not

leverage MIR-level type information (SMACK [Baranowski et al.(2018)], Sea-

Horn [Gurfinkel et al.(2015)], RVT-KLEE [Reid et al.(2020)]).
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Kani is implemented as a backend for the Rust compiler that uses a ma-

ture, industrial-strength model checking tool—the C Bounded Model Checker

(CBMC) [Clarke et al.(2004)]—as a verification engine. Kani translates Rust’s

Mid-level Intermediate Representation (MIR) into Goto-C, CBMC’s C-like inter-

mediate representation. Specifications in Kani are written as Rust-source-level

assert!(...) statements, with simple extensions to specify assumptions and non-

deterministic symbolic input (Section 3.3.1). Kani can be invoked on individual

Rust files or on crates with the Cargo Rust build tool. In addition to the user-added

assertions, Kani checks for arithmetic overflow, out-of-bounds memory accesses,

and invalid pointers. CBMC performs bounded unrolling of loops and recursion

in the program, but Kani by default is run with assertions that guarantee that if

code is verified, loops are sufficiently unrolled (via an assertion that any iterations

beyond the unrolling bounds are unreachable).

In this chapter, we identify dynamic trait objects as an essential language

feature for Rust verification tools to tackle in order to enable use on large, real-

world Rust projects. Our contributions are as follows:

1. We describe the Kani Rust Verifier, an open-source bit-precise symbolic

model checker for Rust programs. We show that covering dynamic trait

objects semantics is necessary to reason about real-world Rust, and we iden-

tify nuanced interactions between dynamic dispatch and the Rust borrow

checker that must be correctly modeled by tools that target Rust’s Mid-level

Intermediate Representation (MIR).

2. We show how Kani uses MIR-level semantic information about traits to re-

strict possible targets for function pointers, which pose a well-known perfor-

mance challenge for symbolic execution tools.
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3. We provide a case study on the open-source Firecracker repository that shows

that function pointer restrictions unlock a previously intractable proof, with

verification performance (under 20 minutes) suitable for use in continuous

integration.

4. We share an open-source suite of verification test cases for dynamic trait

objects and compare the results of several related tools.

3.2 Rust Trait Overview

Traits are a core Rust language feature for specifying when types should share a

common interface. By default, Rust uses a monomorphization process to concretize

each possible method implementation with a specific type. But, programmers can

instead opt-in to dynamic dispatch when they use a trait to trade off run-time

performance with improved code size and compilation times.

3.2.1 Traits and Monomorphization

To understand dynamic dispatch, we first describe Rust’s default static dispatch

techniques for trait objects. We start with a motivating example which defines an

interface for objects that have an integer count method:

trait Countable { fn count(&self) -> usize; }

We can implement this trait for two data structures, the Rust standard library’s

Vec and our own custom Bucket struct:
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impl Countable for Vec<i8> {

fn count(&self) -> usize { self.len() }

}

struct Bucket {

item_count: usize,

}

impl Countable for Bucket {

fn count(&self) -> usize { self.item_count }

}

Now, we can use the Countable type to refer to any object that implements the

trait:

fn print_count<T: Countable>(obj: T) {

print!("Count = {}", obj.count());

}

This implementation specifies that the function takes a generic type T that must

implement the Countable trait. Lower-level languages like assembly do not, of

course, support generics. How, then, does the compiler resolve the call in the

body of print_count into an actual function call jump (that is, which count

implementation should be called)?

By default, the Rust compiler uses monomorphization: it creates a specialized

print_count function for each concrete type. This process happens at the MIR

level, but the effect is roughly equivalent to this Rust source code:

fn print_count_vec_i8(obj: Vec<i8>) {
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print!("Count = {}", obj.count::<Vec<i8>>());

}

fn print_count_bucket(obj: Bucket) {

print!("Count = {}", obj.count::<Bucket>());

}

Monomorphization means that every function that uses a generic type bound must

be duplicated for every possible implementation.

Closures as dynamic trait objects.

Closures are anonymous functions that can capture (and if specified, mutate) val-

ues in the environment where they are defined. Each closure has its own unique

concrete type (that is, even closures that share the same signature do not share a

concrete type). This creates a difficulty: what type should be used when a closure

is passed into a higher-order function, such as map? Rust solves this using traits:

all closures must implement at least one of three standard-library-defined traits:

FnOnce, FnMut, or Fn, depending on whether they consume, mutably reference, or

immutably reference the captured environment (see Section 3.3.2).

For example, we could define a function that takes in an item cost and a closure

to calculate the price of that item with tax:

fn price<T: Fn(f32)->f32>(cost: f32, with_tax: T)

-> f32 { with_tax(cost) }

To call this function, we simply specify a closure as the second argument:

let tax_rate = 1.1;
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price(5., |a| a * tax_rate); // Price is: 5.5

price(5., |a| a + 2.); // Price is: 7

Rust will monomorphize the code at compile time to call the right implementation

(we use [closure@...] to represent the closure environment, which stores the

tax_rate in the first closure and is empty in the second):

fn price_closure@main:1(cost: f32) -> f32 {

closure@main:1([closure@main:1], cost)

}

fn price_closure@main:2(cost: f32) -> f32 ...

The costs of traits.

With this monomorphization strategy, developers pay no run-time efficiency cost

compared to code that manually specifies each implementation without using

generics or abstraction. However, monomorphization can have undesirable effects:

an increase in code size and compilation time, especially as the number of possible

implementations grows.

Verification tools can often avoid reasoning about monomorphization by con-

suming Rust code after monomorphization completes, either by running MIR’s

default monomorphizer or by targeting a lower-level of code in compilation, such

as LLVM IR. From the perspective of a verification tool, it is feasible to han-

dle Rust code with statically dispatched trait objects by instead using only the

monomorphized, concrete functions.
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3.2.2 Dynamic Trait Objects

To trade off run-time efficiency with improved code side and compilation time,

developers can use dynamic trait objects to opt in to dynamic dispatch (and out

of monomorphization). For example, using our same Countable trait, a developer

could have this alternative implementation of print_count:

fn print_count(obj: &dyn Countable) {

print!("Count = {}", obj.count());

}

To pass a trait object to this function, developers need to cast it as a dynamic

trait object:

print_count(&Bucket::new(1) as &dyn Countable);

Here, the dyn keyword expresses that this object should have method calls dy-

namically dispatched. That is, the Rust compiler will use a different strategy to

answer the question: “which implementation should obj.count() call?”

Rather than creating a new function signature per concrete type for

print_count, the Rust compiler will use a single instance of print_count that

takes a single type that can represent all objects that implement Countable. In

Rust, this type is an instance of a fat pointer—a double-wide pointer type that rep-

resents both data and essential metadata. Fat pointers for dynamic trait objects

consist of a data pointer to the object itself and a pointer to the virtual method

table (vtable) [Driesen and Hölzle(1996)] that maps trait-defined methods to their

implementations.
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Figure 3.1: Architecture of Kani. Unfilled indicates the Rust compiler with the
canonical LLVM backend; filled indicates Kani. IR is Intermediate Representa-
tion. Kani translates Rust’s MIR to CBMC’s C-like Goto-C language, uses MIR
type information to emit function pointer restrictions, and outputs a successful
verification, a failure with a counterexample trace, or a timeout.

Rust’s implementation using vtables.

Rust Mid-level Intermediate Representation (MIR) uses abstract trait types, so

it is up to each backend to implement vtables as they lower to their correspond-

ing lower-level representation. Because vtables require jumps to a dynamically

computed address, they can potentially be exploited in security attacks (e.g., in

C++ [Jang et al.(2014)]), and hence their precise implementation has security im-

plications. Although Rust’s informal specification does not specify the exact vtable

layout, MIR provides utility functions for building vtables of a specific form. When

we lack documented semantics for how Rust treats dynamic trait objects, we use

the canonical LLVM backend as a reference. Our descriptions are based on Rust

1.55.0, the latest version of the compiler at the time of writing.

In the canonical LLVM backend for the Rust compiler, vtables have a specific

layout that contains object metadata (the size and alignment of the data) as well

as pointers for each method implementation. Every vtable includes a pointer to

the concrete type’s drop (destructor) method implementation. The remainder of

the vtable contains pointers to the concrete implementation of all methods defined

by that trait. A new vtable is defined at compile time for every cast statement
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between a unique pair of concrete object type and trait type, and stored in a new

global variable. Dynamic trait objects that share the same concrete type can thus

share the same vtable.

The vtable for our Countable example is (conceptually):

sizeof<Bucket> 8

align<Bucket> 8

&Bucket::drop 0x7ffe02d0ba88

&Bucket::count 0x7ffe02d0ba90

The fat pointer for our &Bucket as &dyn Countable object would have one

pointer to the Bucket and one pointer to the vtable above. Calls to methods

that take self then can pass the data pointer as self. For example, print_count

would be implemented as roughly:

fn print_count(obj: &dyn Countable) {

print!("Count = {}",

*(obj.vtable.count)(obj.vtable.data));

}

For dynamic closures, the data half of the fat pointer points to the closure’s envi-

ronment. The vtable consists of the same size, align, and drop metadata, then

pointers to functions defined for Fn, FnMut, and/or FnOnce.

Summary.

Dynamic trait objects allow developers to compile code with dynamic objects that

carry metadata specifying which trait implementations of methods to call, rather
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than statically duplicating code through monomorphization. Dynamic trait ob-

jects are used throughout the Rust standard library, so even if programmers do

not opt-in to dynamic dispatch within their own source code, they are likely to

pull in Rust source that constructs and uses vtables (see Section 3.4.1). Rust’s

dynamic dispatch poses a challenge for verification both because how to imple-

ment them is not precisely specified by the Rust language definition, and because

function pointers require pointer analyses that are a known challenge for symbolic

reasoning [Milanova et al.(2004), Lu and Hu(2019)].

3.3 Methodology and Implementation

3.3.1 The Kani Rust Verifier

Architecturally, Kani is implemented as code generation backend to the rustc

compiler (Figure 3.1).4 Instead of translating to machine code (e.g., via the LLVM

compiler infrastructures for the standard backend or Cranelift for an experimental

debug backend), Kani translates to Goto-C, the C-like intermediate representation

for CBMC [Clarke et al.(2004)]. Kani then invokes CBMC on the generated goto

program, which ultimately runs symbolic execution and discharges formulas to an

off-the-shelf SAT or SMT solver (by default, MiniSAT [Eén and Sörensson(2003)]).

Properties checked and soundness.

Kani by default checks for memory safety (pointer type safety, invalid pointer

indexing in unsafe code, slice/vector out-of-bounds), arithmetic overflow, run-time

4https://rustc-dev-guide.rust-lang.org/backend/backend-agnostic.html
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panics, and violations of user-added assertions. Users can additionally specify

assert! and kani::assume statements using Rust syntax. To reason about all

possible inputs, users specify variables as non-deterministic symbolic inputs using

a special generic kani::any<T>() function. We use sound to indicate that Kani

never misses violations of the checked properties in the rustc-produced binary

execution on some input. We have made the conscious choice when developing

Kani to prioritize soundness over completeness, so Kani fails prior to verification

if it encounters a Rust language feature it does not yet support. Kani currently

focuses on sequential Rust and thus fails on any concurrency constructs. Kani

also fails on some compiler intrinsics, including a subset of SIMD (vector single

instruction, multiple data) operations.

While CBMC can act as a bounded model checker, Kani uses it for unbounded

verification. By default, CBMC is bounded because it requires either a heuristic or

a user-specified unrolling bound to unroll each loop and set of recursive function

calls. When symbolic execution reaches the specified bound, CBMC defaults to

inserting an assume(false), which stops further exploration of the execution.

However, CBMC provides an unwinding-assertions flag that asserts that any

loop iteration beyond the specified bounds is unreachable. Kani enables this flag—

this causes us to be potentially incomplete on programs where the bounds cannot

be specified, but provides an assurance of soundness for all cases where Kani returns

“SUCCESS”.

Choice of input representation.

The Rust compiler translates a Rust program between a series of increasingly

low-level representations, as shown in Figure 3.1. One of the key architectural
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choices when designing a Rust verifier is what level of representation the verification

tool should take as input. Each level has both advantages and disadvantages for

verification. On the one hand, each step lower in the representation tends to use

a smaller set of more uniform constructs. Defining a formal semantics is therefore

easier at lower levels. Tools such as SMACK operate at the LLVM intermediate

representation (LLVM-IR) level, which has the additional benefit of allowing a

shared verification backend between different languages, such as C and C++.

On the other hand, lower-level representations lose information about the orig-

inal structure of the program and hence about the original intent of the program-

mer. For example, the compiler may give implementation-defined semantics in a

lower-level representation to an operation that is undefined behavior at a higher

level. We have found that the Rust Mid-level Intermediate Representation (MIR)

to be an effective interface for verification. MIR is a (fairly) clean and compact

representation that retains most of the semantic Rust type information. Kani in-

vokes monomorphization before analysis takes place, so we do not explicitly need

to reason about generic constructs. As we demonstrate in Section 3.4.2, MIR’s rich

type information is crucial to enabling high-performance verification of dynamic

trait objects.

The need for bit-precision.

unsafe Rust code can both read and modify objects as a collection of raw bytes,

bypassing the borrow checker and type system. For example, Rust code can use

transmute to reinterpret bytes of one type as bytes of another or use raw pointer

indexing to directly view and modify the bytes of a type. These features are used

for performance and portability benefits in production Rust code, including in the
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Rust standard library.

For example, the standard library’s OsStr implementation notes:

/* FIXME: `OsStr::from_inner` current implementation relies on

`OsStr` being layout-compatible with `Slice`... */

pub struct OsStr { inner: Slice, }

In order to verify such code, it is necessary that the bitwise layouts used by Kani

match those used by the Rust compiler itself. While relying on implementation

details like this is undefined behavior for source-level Rust code, the standard

library is able to rely on stronger implementation-level guarantees from the Rust

compiler. Kani’s CBMC backend provides the bit-level reasoning necessary to

handle such cases.

3.3.2 Dynamic Trait Objects in Kani

Goto-C (and C) do not have native support for method dispatch, so Kani must

lower MIR to C in a manner that removes traits but maintains the same semantics.

Our primary strategy is to follow the LLVM backend’s vtable implementation,

emitting Goto-C instead of LLVM IR.

vtable construction.

Dynamic objects are created at cast sites, where a concrete type is cast to a dyn

type explicitly or implicitly. Like the LLVM code generation backend, Kani keeps

a cache of vtables that constructs a new vtable for every unique concrete object,

trait type tuple. Vtables generated by Kani are Goto-C structs that map the
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metadata identifier to the corresponding data.

Naming vtable fields was less straightforward than we anticipated. In the

LLVM code generation backend, vtables are global allocations without named fields

(rather, each individual element is accessed through pointer arithmetic). To keep

our generated Goto-C code more debuggable by Kani developers (and counterex-

ample traces more readable for users), we opted to use a struct with named fields

(because each field is the size of one pointer, the memory layout is the same). An

earlier version of Kani mapped the method name to the method implementation

function pointer. However, we found this failed to handle cases where an object

implemented two traits with the same method name.

Unlike some other languages, Rust allows a type to implement two traits with

identically-named methods (regardless of whether their signature is the same):

trait A { fn is_odd(&self) -> i32; }

trait B { fn is_odd(&self) -> bool; }

impl A for i32 { ... };

impl B for i32 { ... }

trait C : A + B {}

impl C for i32 {}

// The vtable for x has two 'is_odd' entries

let x: &dyn C = &3 as &dyn C;

To resolve this ambiguity, Kani now uses the index of the item in the vector re-

turned from a Rust MIR API call—vtable_entries—to uniquely identify meth-

ods. We confirmed this strategy in discussions with Rust compiler developers.5

5https://rust-lang.zulipchat.com/#narrow/stream/144729-wg-traits/topic/.E2.

9C.94.20object.20upcasting/near/246857652
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Specifically, we create a new vtable when we see a cast from a sized pointer

type to an unsized (non-slice) pointer type, where we have not already created a

vtable for this concrete type, trait type pairing. At construction, we iterate over

the Rust compiler’s new (June 2021) vtable_entries6 results. We construct size

and alignment using the Rust compiler’s API for layout and drop resolution.7

For each method defined explicitly for that trait type, we add an entry indexed by

position in the canonical vtable_entries.

Virtual calls through vtables.

Dynamic dispatch occurs when a statement calls a method on a dynamic trait

object.

At the MIR level, we construct a dynamic call through a vtable when we

encounter a virtual call terminator. We obtain the object’s self pointer and vtable

pointer by accessing the respective components of the fat pointer. We use the

index idx provided by the virtual call object to determine the vtable method—

which corresponds with the index into the vector returned by the Rust compiler’s

vtable_entries.

Casts of dynamic objects.

Rust does not currently support general dynamic trait upcasting (see Section 3.6):

i.e., one cannot cast an object of type &dyn Foo to one of type &dyn Bar even if

6https://doc.rust-lang.org/nightly/nightly-rustc/rustc trait selection/

traits/fn.vtable entries.html
7https://doc.rust-lang.org/stable/nightly-rustc/rustc middle/ty/layout/

trait.LayoutOf.html,https://doc.rust-lang.org/beta/nightly-rustc/rustc middle/

ty/instance/struct.Instance.html#method.resolve drop in place
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one is a subtype of the other (unlike, for example, Java subtyping). The underlying

reason is that Rust prefers to stay as close to zero cost abstractions8 as possible—

giving users high level language features without sacrificing performance. Totally

generic trait upcasting would require modifying or rebuilding vtables (or additional

pointer indirection), imposing a run-time cost.

Kani initially encoded the assumption that dynamic trait objects could thus

not be the source of cast statements. When we tested Kani on the standard library,

Kani found violations of this assumption when handling types like &dyn Error +

Send. Looking more into the Rust documentation for traits, we found:

The Send, Sync, [...] and RefUnwindSafe traits are auto traits. Auto

traits have special properties. [...]

Because auto traits like Send have no associated methods, the underlying vtable

does not need to change when a cast involves only auto-traits. The Rust compiler

therefore allows adding and removing auto traits in dynamic trait objects casts,

breaking Kani’s initial assumption. To reason about the Rust standard library

as-is, verification tools must be able to handle this type of cast.

Closure signatures.

Our initial implementation of dynamic trait objects in Kani (which, like the current

version, prioritized soundness over completeness) failed to verify due to a CBMC

pointer error on the following input:

8https://blog.rust-lang.org/2015/05/11/traits.html
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let f: Box<dyn FnOnce(i8)> = Box::new(|x| {

assert!(x == 1);

});

f(1);

A nearly-identical version of this case with Fn replacing of FnOnce verified success-

fully. The root issue was a surprisingly subtle interaction between Rust’s borrow

checker and dynamic dispatch.

The Rust documentation includes the following:

Use FnOnce as a bound when you want to accept a parameter of

function-like type and only need to call it once. If you need to call

the parameter repeatedly, use FnMut as a bound; if you also need it to

not mutate state, use Fn.

FnOnce thus has a method signature that moves ownership of its self type by

taking it by-value: fn call_once(self, args: Args)-> Self::Output. This

allows the Rust borrow checker to give errors on attempted reuse such as:

‘f‘ moved due to this call. This value implements ‘FnOnce‘,

which causes it to be moved when called

In comparison, Fn has this method signature: fn call(&self, args: Args)->

Self::Output. Both Fn and FnOnce are used for dynamic dispatch via vtable calls,

using the self parameter as one argument. This is the root cause of our verification

failure—the machinery we have described for closures and vtables requires that the

vtable’s self argument be a pointer to an object.
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Rust uses a vtable shim to work around this mismatch:

/*`<T as Trait>::method` where `method` receives unsizeable `self:

Self`...The generated shim will take `Self` via `*mut Self` -

conceptually this is `&owned Self` - and dereference the

argument to call the original function. */

VtableShim(DefId),

However, the full translation is not complete at the MIR level: before code gener-

ation, backends must be sure to correct the function call signature Ror example,

from the Rust compiler:

if let InstanceDef::VtableShim(..) = self.def {

// Modify `fn(self, ...)` to `fn(self: *mut Self, ...)`

Backends can either disregard the MIR function signature and use a separate

fn_abi_of_instance, or apply this same correction to the MIR function signature.

Verification tools can reasonably make either choice—but using the MIR function

signature alone in this case will lead to incorrect results.

3.3.3 Leveraging Trait Semantics for Function Pointer Re-

strictions

One of Kani’s key advantages over more language-agnostic verification tools is that

it can exploit Rust’s semantics to improve verification completeness and perfor-

mance. While other tools (i.e., SMACK [Baranowski et al.(2018)], RVT-KLEE,

RVT-SeaHorn [Reid et al.(2020)]) that work at the level of LLVM IR must work

with vtables as opaque allocations generated by the standard Rust backend, Kani
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can offer a more direct interpretation of dynamic dispatch that allows us to combat

path explosion in the verification state space. At the MIR level, we have access to

rich trait information; by the time Rust is lowered to LLVM, traits are gone and

replaced by non-specific LLVM pointer types which are more difficult to reason

about. Specifically, Kani uses information about dynamic trait object creation

(at object cast sites) and use (at function call sites) to restrict the set of possible

targets for vtable function pointer calls.

The verification challenge of dynamic dispatch.

In general, indirect function calls pose a scalability challenge for program verifica-

tion due to the pointer analysis involved [Milanova et al.(2004), Lu and Hu(2019)].

Before running symbolic execution, CBMC removes all function pointers by low-

ering them to conditional if blocks between possible target functions. By default,

CBMC considers all functions in the code generation unit of the correct function

signature to be possible targets (this is sound when CBMC is run with pointer

checks, which verify that all pointers are to objects of the correct type).

In a simple case, this permissive approach works well. Consider two functions

with the same signature:

fn a(x: i32) -> bool { x == 2 }

fn b(x: i32) -> bool { x != 0 }

When a pointer to a function of this type is used, for example, (*f)(2) CBMC’s

algorithm conceptually emits the following:

if (f == &a) a(2);

else if (f == &b) b(2); // ...

66



CBMC can then use standard symbolic execution techniques for conditional control

flow to soundly reason about this code.

This strategy becomes problematic when run on large code bases that pull in

numerous dependent crates. Every dynamic trait object uses a function pointer

every time a method is called, because each trait-defined method call is resolved

through a vtable entry. The number of possible function pointer targets especially

proliferates for calls to drop—the destructor function. Every object’s drop function

signature shares a shape: a method that takes a single self parameter and returns

the unit type (analogous to a void return in C). When the self type is something

from the standard library, such as std::io:Error, the number of possibilities

skyrockets. In Section 3.4.2, we show how such a case can lead to hundreds of

possible targets, rendering this approach to verification intractable.

Restricting call destinations using Rust semantics.

We recognized that, with Kani’s semantic understanding of traits at the MIR level,

we have a much more precise notion of which implementations vtable function

pointers could target. In particular, we can guarantee (short of the user using

unsafe to transmute the vtable memory) that a call through a vtable will be one

of the trait-defined methods for that trait type that we have encountered during

code generation. To maintain soundness even under unsafe memory transmutes, we

assert!(false) if the actual function pointer does not match one of our identified

possibilities. This also allows us to soundly under-approximate possible targets by

not explicitly accounting for casts between trait types, as described in Section 3.3.2.

We implement function pointer restrictions by tracking possible implementa-

tions (at object cast sites, when the vtable is built) and uses of vtable pointers
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(at function call sites). For the first, we build a map that builds a set of possi-

ble implementations (in our case, symbol names for each Goto-C function) keyed

by the tuple of trait type and method index for vtables of that trait type. For

call sites, we build a list of structs with trait name, method index for vtables of

that trait type, and information for identifying that call site in CBMC. Because

dynamic dispatch calls can occur across crate boundaries, we emit a file with this

information for each crate (using a stable unique hash for trait types). Finally,

after code generation, we combine the per-crate data by iterating over the list of

call sites and looking up the possible implementations we have found for that trait

index tuple. When there are no possible implementations (possible in functions

that are never invoked), we emit the empty set.

Kani combines the restrictions for each Rust dependency and the crate itself

into an auxiliary JSON file to be consumed by CBMC as function pointer re-

strictions. We have seen CBMC times drop by an order of magnitude with this

restriction strategy, as we describe in the next section.

3.4 Evaluation

For our evaluation, we used an Amazon EC2 m5d.4xlarge instance with 16 cores

and 64GB of memory, running Ubuntu 20.04.2.9

9https://github.com/avanhatt/icse22ae-kani
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3.4.1 Prevalence of Dynamic Trait Objects

We conducted a simple empirical study to estimate the prevalence of dynamic

trait objects in the 500 most downloaded crates on crates.io, the Rust package

repository. We found that while only 185 of these 500 crates (37%) use the explicit

dyn keyword within their source code, 349 (70%) include at least one vtable when

compiled with rustc.

We downloaded the top 500 crates sorted by greatest number of downloads on

October 2, 2021. To estimate the implicit use of dynamic trait objects, we invoked

a debug build of the Rust compiler via cargo build and searched the debug

output for the line get_vtable, which is logged at vtable use. This is likely an

over-estimate of the dynamic trait objects that are actually used in functionality

a user might want to verify for these crates, but it does provide an indication

of how often verification tools that integrate with Cargo will encounter linked

dynamically-dispatched code.

3.4.2 Case Study: Firecracker

As a real-world case study, we consider how two different variants of Kani—one

without vtable function pointer restrictions, and one with—perform on examples

from the open-source Firecracker hypervisor. This case study highlights the chal-

lenges in moving from small, standalone verification examples to proofs that sit

alongside large scale codebases.

Implemented in Rust, Firecracker provides the underlying virtualization tech-

nology for two publicly-available serverless compute services at Amazon Web Ser-
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pub trait BusDevice: AsAny + Send {

fn read(&mut self, offset: u64,

data: &mut [u8]);

fn write(&mut self, offset: u64, data: &[u8]);

}

Figure 3.2: The BusDevice trait used for explicit dynamic dispatch in Firecracker’s
serial device.

vices: Lambda and Fargate [Agache et al.(2020)]. A core characteristic of server-

less computing is multitenancy, meaning that multiple customer workloads (e.g.,

functions or containers) may run on the same hardware. Consequently, Firecracker

is crucial for ensuring the isolation of customer workloads.

Firecracker Serial Device.

Firecracker provides console emulation for a guest virtual machine by emulating a

serial device (16550A UART). The guest virtual machine sends and receives bytes

by writing and reading to device registers mapped into the guest memory. Since

read and writing to a device through memory is a common interface, Firecracker

defines a trait BusDevice which defines write and read methods (Figure 3.2).

Multiple devices are wrapped in a Bus container which maps address ranges to

a particular device and routes write and read requests as dynamic calls to the

underlying device.

Verification task. We aim to demonstrate a simple proof harness using the

serial device behavior in loopback mode, where bytes are read and written to the

same port. Firecrack’s serial device specifies that only a single byte can be read or

written in a given call. Figure 3.3 shows a small proof harness that checks that for

any single byte we can write through the dynamically-dispatched call, the same
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1 fn serial_harness() {

2 let mut serial = SerialDevice {

3 serial: Serial::new( ... ) };

4 // Model arbitrary input as symbolic

5 let bytes: [u8; 1] = kani::any();

6 let mut buf = [0x00; 1];

7 // Call functions-under-verification

8 <dyn BusDevice>::write(&mut serial, 0u64, &bytes);

9 <dyn BusDevice>::read(&mut serial, 0u64, &mut buf);

10 assert!(bytes[0] == buf[0]);

11 }

Figure 3.3: Our proof harness for simple read/write functionality. kani::any

() is an Kani construct that returns a non-deterministic, symbolic value of the
inferred type.

byte is read back. Kani checks this user-added assertion, as well as memory safety,

arithmetic overflows and division by zero, and pointer safety.

Function pointer restrictions. With our function pointer restrictions enabled,

Kani identifies exactly the correct function pointer to consider a target for both

read and write. In Kani without function pointer restrictions, CBMC’s default

function pointer strategy finds 8 possible calls for each of read and write. For

example, the call for write includes these two options, which are from an entirely

different module of Firecracker but are included because they share the same func-

tion signature:

if(v.vtable->6 == Block_VirtioDevice_read_config)

goto __CPROVER_DUMP_L11;

if(v.vtable->6 == Block_VirtioDevice_write_config)

goto __CPROVER_DUMP_L12;

For this simple illustrative case, Kani runs in 4 minutes and 4 seconds with

the restrictions and 4 minutes and 13 seconds without, representing a modest 5%
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speedup (with a tradeoff in code size increasing from 1.14GB to 1.20GB due to

the auxiliary restrictions files). In the next example, we show how implicit vtable

calls can cause far worse performance differences.

Firecracker Block Device Parser.

For our next function-under-verification, we consider the emulated block device

available to guest virtual machines (VMs) for storage (i.e., reading and writing to

disk). The device is visible to the guest VM through MMIO (memory-mapped IO),

using the virtio API [Russell(2008)]. The guest VM allocates a set of virtqueue

data structures in guest memory to support generic data transport between the

guest and hypervisor. Each entry in a virtqueue is a descriptor: a pointer with

metadata, such as length and read/write permissions, to a buffer in guest memory.

Descriptors can be chained so that multiple buffers can be transported in a single

transaction. For the block device, a read (respectively, write) transaction consists

of three descriptors pointing to three buffers, containing (1) the request type and

disk sector, (2) the data buffer to be filled/read, (3) a status byte returned by the

device. The primary task of the emulated block device is to parse and execute

guest transactions that it receives through this interface.

Verification task. Isolation between guest VMs requires that no input from

a guest, no matter how malformed, can cause Firecracker to panic. Figure 3.5

gives a straightforward proof harness for the parse function of the block device

(Figure 3.4). The parse function is responsible for taking the raw untrusted bytes

of descriptors from guest memory and returning either a request object or an error.

We use symbolic inputs (generated with kani::any() on line 3) to model input
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pub fn parse(

avail_desc: &DescriptorChain,

mem: &GuestMemoryMmap,

) -> result::Result<Request, Error> { ... }

Figure 3.4: parse, our function-under-verification.

fn block_proof_harness() {

// Model arbitrary descriptor from guest as symbolic

let desc : DescriptorChain = kani::any();

// ..., call function-under-verification

match parse(&desc, /*...*/) {

Ok(req) => {},

Err(_) => {},

}

}

Figure 3.5: Our proof harness for parse.

from the guest as well as to over-approximate data values read from the guest

memory. Successfully verifying this proof harness using Kani shows that the block

device has no run-time panics under any guest behavior.10 Kani can be used to

verify deeper functional properties, in addition to panic freedom—for the purpose

of this case study, we note that even this simple harness is intractable without

MIR-level type reasoning.

Although the code-under-verification never uses the dyn keyword to explicitly

10Running this proof with the default set of Kani flags gives spurious pointer check errors
(which we are investigating), so the results in this section are for Kani with pointer checks
disabled.

pub enum devices::virtio::block::Error {

// Guest gave us a descriptor that was too short

DescriptorLengthTooSmall,

// Getting a block's metadata fails for any reason

GetFileMetadata(std::io::Error),

// ...

}

Figure 3.6: The error type used in the Result returned by parse.
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invoke a dynamic trait, the parse function returns the type result::Result<

Request, Error>, where Error is a custom enum devices::virtio::block::

Error. As shown in Figure 3.6, one enum value uses the standard library type std

::io::Error, which is implemented using traits. When the returned object goes

out of scope (when block_proof_harness returns), Rust automatically inserts a

call to destruct the object with std::ptr::drop_in_place. This drop_in_place

function uses a dynamic trait object of type Drop, which is routed through the

object’s vtable.

Impact on verification. Even in this simple case, the hidden use of dynamic

trait objects poses a huge challenge for verification with CBMC—std::io::Error

is so commonly used within Firecracker and its dependencies that CBMC identifies

314 possible function targets for this virtual call to drop. Each of these functions

must then be unwound for symbolic execution. CBMC’s symbolic execution engine

was unable to complete this unwinding within a four hour timeout (and hence never

even reached the stage of discharging the actual proof obligations to a satisfiability

solver).

Our trait-based function pointer restrictions allow our proof harness for parse

to terminate successfully in 16 minutes—at least a 15ˆ improvement in verification

performance. Code size again increases slightly, from 0.96GB for the proof harness

without restrictions to 1.02GB for the successful proof. For the problematic call to

drop on std::io::Error, Kani correctly identified that the GetFileMetadata(

std::io::Error) type is never used in this harness or function-under-verification.

That is, Kani emits 0 possible functions that could actually be the target of the pre-

cise Error type in this context, rather than the extremely permissive 314 possible

options. Since Kani soundly replaces the call to drop with assert(false), verifi-
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cation of the test case also serves as verification of the function-pointer restriction

set. As an additional sanity check, we modified the function-under-verification to

non-deterministically return a std::io::Error in some cases, which caused Kani

to fail with spurious, false positive verification errors. Our manual inspection of

these failures indicates that they do not affect soundness, but we are investigating

them as a top priority.

3.4.3 Dynamic Dispatch Test Suite

In developing Kani, we have produced a suite of over 40 verification test cases

for dynamic trait objects. This test suite has been open source throughout its

development.11 We encourage other developers of Rust verification tools to use

and modify these test cases as they add more support for dynamic trait objects.

Our full suite includes versions of the functions-under-verification that are expected

to succeed and versions that are expected to fail.

Table 3.1 shows our understanding of other tools’ support for a subset of test

cases. We used the following versions:

• SMACK: version 2.8.0.

• Crux-MIR: commit hash 3451423.

• Rust Verification Tools: commit hash b179e90.

• Prusti: rustc 1.56.0-nightly (3d0774d0d 2021-08-18).

• Crust: no longer actively developed, the paper specified that dynamic traits

were unsupported [Toman et al.(2015)].

11https://github.com/model-checking/kani
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Test name Description Code snippet

trait-ptr Simple trait, pointer &3 as &dyn T

trait-box Simple trait, boxed Box::new(o) as Box<dyn T>

auto-ptr Auto trait, pointer &3 as &dyn Send

fn-ptr Fn closure, pointer $||{} as &dyn Fn

fnonce-box FnOnce closure, boxed Box::new(||{}) as Box<FnOnce>

gen-ptr Generic trait, pointer trait T: S<i8> + S<u8>

drop-box Explicit drop, boxed impl Drop for T...Box<dyn T>

drop-ptr Explicit drop, pointer impl Drop for T...&dyn T

Tool Kani Crux-MIR RVT-SH RVT-KLEE SMACK
Focus Soundness Soundness Soundness Bug-finding Soundness

Test name

trait-ptr 3 3 3 3 3

trait-box 3 5 5 3 5

auto-ptr 3 5 5 3 3

fn-ptr 3 5 3 3 3

fnonce-box 3 5 5 3 5

gen-ptr 3 5 3 3 3

drop-box 3 5 3 3 5

drop-ptr 3 3 3 3 3

Table 3.1: Dynamic trait object test cases to compare Kani to other verification
tools (3 is supported, 5 is unsupported). Crux-MIR is an MIR-based “static
simulator.” RVT-SH (RVT-SeaHorn), RVT-KLEE, and SMACK all start with
LLVM IR; respectively, they are a model checker, a bug finder, and a Boogie-
based verifier. Prusti and CRUST did not support any form of dynamic trait
object.

3.5 Trusted Computing Base and Limitations

Kani is designed as a sound verifier with respect to the properties checked, but

because neither MIR nor Goto-C currently have formal semantics, the full Kani

toolchain itself is not formally verified. Kani’s trusted compute base includes our

translation from MIR to Goto-C, CBMC itself, and the backend SAT or SMT

solver.
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Compared to some other Rust formal methods tools, Kani’s use of Rust syntax

for assertions and assumptions limits us to a smaller space of expressible properties.

Supporting richer specifications—including support for first-class loop invariants,

explicit existential quantifiers, and modular verification—is future work.

3.6 Discussion and Future Work

In this chapter, we have outlined how a language feature that is thought to

be well-understood—dynamic dispatch—can pose unanticipated verification chal-

lenges. Prior efforts to formalize Rust semantics have (reasonably) focused on

other unique language features, primarily the borrow checker. For example, the

RustBelt[Jung et al.(2017)] project’s λRust “omits some orthogonal features of Rust

such as traits (which are akin to Haskell type classes)”. The Oxide: Essence of

Rust[Weiss et al.(2019)] paper similarly references Haskell type classes and does

not see traits as an “essential part of Rust”. We have a slightly different goal

than this prior work: because we want to embed verification of Rust in real world

codebases, we needed to wrangle with the semantics of trait objects, and we found

that doing so was far from trivial. From this, we can argue a point broader than

just Rust—verification tool designers should be prepared to model the complex

and subtle ways all language features interact. This is especially true when lan-

guages provide a standard library that is not formally specified but uses the desired

language feature.

Trait upcasting coercion. Rust has an in-progress proposal to add a trait up-

casting coercion feature for dynamic trait objects.12 This language feature would

12https://rust-lang.github.io/dyn-upcasting-coercion-initiative/CHARTER.html
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allow developers to cast between dynamic trait object types as long as the source

type is a subtrait of the destination type. Implementing such coercions requires

a more complicated vtable strategy, since they require the underlying vtable to

change. Kani could be extended to support these trait coercions once they are

enabled by default in Rust. To do so, we would need to extend our vtable genera-

tion and method lookup to model the Rust compiler semantics, which will likely be

vtables with a nested structure that can require multiple pointer indirections. This

would also be additional motivation to extend our existing strategy for restricting

function pointers to include directed type cast information.

3.7 Related Work

MIR-based verification.

Other tools target Rust’s Mid-level Intermediate Representation; but to our knowl-

edge no other tool provides sound verification of symbolic inputs and supports the

breadth of dynamic trait objects.

CRUST [Toman et al.(2015)] is a similar bounded model checker for Rust that

also uses the CBMC tool as a verification backend. However, CRUST explicitly

does not support dynamic trait objects or dynamic dispatch and is no longer being

actively developed.

Prusti [Astrauskas et al.(2019)] is a Rust compiler plugin built on the Viper

verification infrastructure that can verify user-added specifications, as well as the

absence of panics. Like Kani, Prusti leverages MIR type information to improve

verification results. Prusti has a more expressive language for proof annotations
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than Kani, including supporting loop invariants that allow verification of programs

Kani cannot currently verify. However, Prusti has limited support for unsafe code

and does not support dynamic trait objects (our tests fail with compiler errors).

A recent extension to Prusti adds additional support for closures; however, to our

knowledge, this extension does not handle dynamic closures [Wolff et al.(2021)].

Crux-MIR is a symbolic execution that similarly targets Rust’s MIR [Galois, Inc(2020)]

using Galois’ Crucible verification infrastructure. Crux-MIR can verify simple

cases of dynamic dispatch through &dyn pointer references. However, the tool fails

with unimplemented for boxed dynamic objects (e.g., Box<dyn T>) and dynamic

closure objects (e.g., &dyn Fn()-> i32).

Facebook’s experimental MIRAI is an abstract interpreter for MIR [Experimental(2021)].

MIRAI explicitly prioritizes a low false-positive rate for bugs rather than a low

false-negative rate, and thus does not claim to provide sound verification.

LLVM-IR based Rust verification.

Several LLVM-based tools have been extended to better support Rust code. As

we showed in Section 3.4.2, the generality of supporting Rust at the LLVM IR

level comes with the downside of being unable to apply Rust-type-level semantic

understanding. However, LLVM-backed solutions tend to be less dependent on

supporting changes to Rust, which currently evolves more quickly than LLVM.

The SMACK toolchain has been used to verify Rust by using the existing rustc

backend to produce LLVM IR [Baranowski et al.(2018)]. SMACK’s toolchain

was initially designed to primarily support Clang as a front end and thus required

changes (primarily to alias analysis) to support Rust programs. Further, SMACK’s
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handling of the Box datatype requires that the box type be Sized, which seems to

render the tool unable to reason about boxed dynamic closures.

Google Research’s Rust Verification Tools (RVT) Project [Reid et al.(2020)]

aimed to build on a range of existing verification tools, from property testing to

symbolic execution. Their tool supports multiple symbolic execution engines, each

based on LLVM IR. RVT includes a KLEE [Cadar et al.(2008)] backend that can

cover our full test suite of cases. However, KLEE is designed with a focus toward

bug finding rather than unbounded, sound verification. RVT’s SeaHorn back-

end uses the SeaHorn Verification Framework [Gurfinkel et al.(2015)] and provides

sound verification, but fails on some boxed closure test cases.

Analyzing virtual calls.

Indirect function calls pose well-known problems for program analysis in

general because identifying the code being invoked entails pointer analy-

sis [Milanova et al.(2004), Lu and Hu(2019)]. Symbolic execution tools, for

example, sometimes resort to requiring user annotations to handle indirect

calls [Ramos(2015), Section 3.4] [Maksimović et al.(2021)]. In languages with

built-in support for virtual calls, such as object-oriented languages, optimizing

compilers typically attempt devirtualization, opportunistically replacing indirect

calls with direct calls when pointer information is sufficient, to make programs

more analyzable [Padlewski(2017), Ishizaki et al.(2000)]. The function-pointer re-

striction technique in this work (Section 3.3.3) resembles a form of devirtualization

that relies solely on type information from Rust’s trait system, with the goal of

improving model-checking efficiency and precision.
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3.8 Chapter Summary

For verification of Rust to be deployed in large-scale projects, tools need to reason

about the dynamic trait objects that are pervasive throughout the Rust standard

library. In this chapter, we demonstrated how our model-checking tool, Kani, suc-

cessfully translates Rust’s dynamic trait semantics. We show that by targeting

Rust at the Mid-level Intermediate Representation level rather than LLVM-IR,

we can leverage trait-based type information to improve verification time up to

15ˆ. Our Firecracker case study highlights how this semantic understanding of

traits unlocked previously intractable verification results. We encourage the other

verification projects to use and build on our open-source suite of tests for dy-

namic dispatch, and we look forward to working with the Rust community to

build an ecosystem where developers can verify functional correctness of security-

and safety-critical Rust programs.
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CHAPTER 4

VERIISLE: LIGHTWEIGHT, MODULAR VERIFICATION FOR

INSTRUCTION SELECTION

4.1 Introduction

WebAssembly [Haas et al.(2017)] (Wasm) is a portable bytecode format originally

designed for the browser, with three main goals: safety, speed, and portability.

Wasm’s machine-independent but low-level semantics make compilation and exe-

cution fast on any platform; its type system and bounded memory regions work

together to prevent programs from reading or writing data outside of their own

heap (their sandbox ). This isolation guarantee is essential when users interact with

the web, because each click leads to untrusted code.

Isolation has made Wasm popular beyond the web, too. Edge cloud

services from Cloudflare [Kenton Varda(2018)], Vercel [Vercel Inc.(2023)], and

Fastly [Pat Hickey(2019)], for example, run users’ Wasm code on geographically

distributed content delivery networks. To improve startup time, these Wasm-based

services can co-locate different untrusted code modules within the same process ;

Wasm’s lightweight isolation enforcement takes the place of more traditional, costly

process- or VM-based isolation.

Unlike a process or VM, however, Wasm’s safety guarantee relies on the cor-

rectness of the underlying compiler. The compiler inserts dynamic checks that

confine a module to its own memory region before generating native code for

that module. Code generation, then, is a pillar of every Wasm-backed system’s

trusted compute base: almost any miscompilation, however seemingly benign or
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rare, could be exploited to produce code that bypasses Wasm’s security guar-

antees [Fallin(2021a), Crichton(2022c), Crichton(2022a), Crichton(2022b)]. Code

generation bugs can let malicious Wasm code steal data from—or corrupt the

execution of—completely unrelated modules or the host runtime itself.

As one example, a code generation CVE1 in Cranelift [Bytecode Alliance(2023b)],

a compiler backend used in several industrial Wasm runtimes, permitted this kind

of sandbox escape [Crichton(2023)]. The bug was in Cranelift’s x86-64 instruction

selection, which uses addressing modes to implement complex address computa-

tions with a single instruction. x86-64 addressing modes can apply small left

shifts, so a single movl instruction is enough to implement code like the following

Wasm snippet:

(i32.load (i32.shl (local.get x) (i32.const 3)))

To lower this code to x86-64, Cranelift must convert 32-bit Wasm addresses into

offests from an instance’s base address in the target machine’s 64-bit address space.

This conversion requires zero-extending the 32-bit Wasm address, computing the

64-bit address as base+zext(addr) (where addr is the original 32-bit Wasm ad-

dress, base is the base address for the module’s memory region, and zext is a zero-

extension). Unfortunately, the Cranelift instruction selector lowered the above

Wasm code to x86-64 instructions that computed base+zext(x)<<3 instead of

base+zext(x<<3). This mistake lets attackers break out of the Wasm sandbox by

giving them access to an extra 3 significant bits of native address space. In Wasm-

time [Bytecode Alliance(2023c)], a popular Wasm engine that uses Cranelift, this

allows a guest Wasm instance to silently read and write memory 6 to 34 GB away

from its own sandbox. Clearly, even simple bugs in instruction selection can create

1“Common Vulnerabilities and Exposures”, a designated list of publicly disclosed security
bugs.
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serious security vulnerabilities.

Instruction selection is hard to get right because it bridges the (large) seman-

tic gap between the compiler’s intermediate representation (IR) and the proces-

sor’s instruction set architecture (ISA). While some instruction-lowering rules are

simple—essentially one-to-one translations from an IR construct to an equivalent

ISA instruction—others are not. They perform complex transformations to eke

out instruction-level performance improvements; account for operators that exist

in either the IR or the ISA—not both; and select different ISA instructions based

on details of IR operations (e.g., their bit-widths).

To help compiler developers automatically reason about the correctness of their

instruction-lowering rules, we present VeriISLE. VeriISLE verifies rules written

in Cranelift’s ISLE domain-specific language (DSL) for specifying how IR terms

translate to machine code sequences. To use VeriISLE, developers annotate their

ISLE lowering rules with specifications; VeriISLE uses a Satisfiability Modulo The-

ories (SMT) solver [Barrett et al.(2010)] to automatically verify full functional

equivalence—i.e., that a rule translates an IR instruction to a native code sequence

with equivalent semantics. VeriISLE allows developers to gradually annotate new

rules, and to quickly update annotations as rules evolve. This modularity is es-

sential because Cranelift is an evolving production compiler: lowering rules—and

entire backends!—are subject to change. To our knowledge, our work with Veri-

ISLE is the first formal verification effort for the instruction-lowering phase of an

efficiency-focused production compiler.

In sum, in this chapter, we:

1. Create VeriISLE, a framework for verifying instruction-lowering rules in the
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ISLE domain-specific language.

2. Verify Cranelift’s implementation of all integer operations in the latest major

WebAssembly release—1.0 [Rossberg(2019)]—for the ARM aarch64 Instruc-

tion Set Architecture (ISA).

3. Use VeriISLE to reproduce and detect previously-fixed bugs (Section 4.4.3)

and vulnerabilities (Section 4.4.3), including the example bug from this sec-

tion.

4. Use VeriISLE to help Cranelift developers identify (Section 4.4.4, Sec-

tion 4.4.4) and fix (Section 4.4.4) new bugs and under-specified compiler

invariants (Section 4.4.4).

We begin by introducing background on instruction lowering and the ISLE DSL

(Section 4.2.1). Then, we present VeriISLE’s design (Section 4.3), and evaluate

its results on Cranelift (Section 4.4), a production Wasm compiler backend. Fi-

nally, we discuss plans to build on VeriISLE towards fully-verified Wasm compilers

(Section 4.6).

4.2 Background

This section provides background for understanding VeriISLE verification (Sec-

tion 4.3) by describing the instruction lowering problem (Section 4.2.1) and

Cranelift’s ISLE domain-specific language (DSL) for writing lowering rules (Sec-

tion 4.2.2). Finally, it introduces SMT solvers [Barrett et al.(2010)], the tools that

power the VeriISLE verification engine (Section 4.2.4).
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4.2.1 Instruction Lowering

During instruction lowering, an instruction selector translates the compiler’s in-

termediate representation (IR) to machine instructions. The instruction selector’s

job is to search for a combination of machine instructions that (1) matches the

IR’s semantics and (2) performs well. A single-pass selector that emits a fixed

set of instructions for every IR operator fulfills the first goal but not the second:

it allows translations of one IR instruction to N machine instructions, but not

more efficient N -to-M translations. This design, for example, precludes compiling

a program with addition and multiplication operations to machine code that uses

a fast multiply-add (madd) instruction.

Most modern instruction selectors do support more general N -to-M match-

ing; in fact, a good instruction selector often embodies a good pattern matcher.

It detects arrangements of multiple operators in the IR that can be translated,

together, into machine instructions. In full generality, this is an NP-hard combi-

natorial search problem; as a result, most production compilers use heuristic short-

cuts for practicality (e.g., greedy pattern matching, as in the “maximal munch”

scheme [Cattell(1978)]).

More complex ISAs and ISA extensions yield more complex matching strate-

gies. For an extreme example, bit-permutation and swizzling instructions vary

widely across ISAs, and lowering of a general permutation operator sometimes

requires a “solver”—or at least a bevy of heuristic special cases to produce good

code [Ren et al.(2006), Mendis and Amarasinghe(2018), VanHattum et al.(2021)].

This is part of what makes instruction selection (and instruction selection ver-

ification!) interesting: it is not simply the task of mapping mostly-equivalent

operators, like translating IR addition to the machine’s integer addition instruc-
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tion. The most subtle reasoning—and many bugs—occur when there is a large

semantic gap between the IR and ISA, and when producing efficient machine code

is a first-order priority [Yang et al.(2011), Lopes and Regehr(2018)].

Production compilers today use a mix of hand-written and DSL-based descrip-

tions of their instruction lowering rules: e.g., LLVM [Lattner and Adve(2004)]

has a 46K-line C++ file specifying x86-64 lowerings, while the Go compiler

uses a term-rewriting DSL where developers can specify expression-tree pat-

terns [Go Authors(2023)]. In this chapter, we focus on the Cranelift compiler’s

lowering DSL.

4.2.2 The ISLE Lowering DSL

The Cranelift compiler project [Bytecode Alliance(2023b)] introduced the ISLE

(Instruction Selection Lowering Expressions) DSL [Fallin(2021b), Alliance(2023),

Fallin(2023)] in 2021 in order to replace handwritten instruction-lowering

code with declarative patterns. ISLE is broadly a term-rewriting sys-

tem [Dershowitz and Jouannaud(1991), Visser et al.(1998)]. In the next sections,

we give a brief overview, and then walk through an example of instruction lowering

in ISLE.

ISLE’s term rewriting for lowering

The main body of a program in ISLE consists of a series of rules. These rules are

written in S-expression syntax and consist of a left-hand side (LHS) and right-hand

side (RHS). The LHS is a pattern, and can use pattern-matching operators such as

wildcards, variable captures, or destructuring (matching a term and then feeding
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its arguments to sub-patterns). The RHS is an expression consisting of a tree of

terms, possibly using variables captured from the LHS. A rule indicates that the

RHS expression is produced whenever the instruction selector encounters a term

tree matching the LHS.

To express instruction lowering as term rewriting, ISLE introduces a top-level

term lower that takes an expression tree as its argument. For example, to lower

an integer add operator (iadd) to the add instruction in the ISA (e.g., x86-64 or

aarch64), one would write:2

(rule

(lower (iadd ty x y))

(isa_add ty x y))

where iadd is defined in Cranelift IR and isa_add is defined amongst all avail-

able machine instructions in the ISA.

ISLE has a strict, static type system that operates on types defined in ISLE

(some of which are external, Cranelift-defined types, such as Rust enums for in-

structions’ opcodes). Nested terms on both the left- and right-hand sides must

type check (i.e., with return and argument values aligned). In addition, the left-

and right-hand side of a rule must have the same type.

Because of the type system’s restrictions, Cranelift expresses all lowerings as

rewrites from (lower (IR_operator ...)) to term trees representing machine

code expressions, potentially passing through multiple intermediate terms. The

term lower is necessary because the LHS and RHS of a rule must have the same

type—but top-level LHS patterns return IR Insts, while top-level RHS expressions

2Slightly simplified for clarity; real rules differentiate on the values’ types.
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return machine Registers. lower, with type signature (decl lower (Inst)Reg),3

does the Inst to Register conversion that allows lowerings rules to type check by

giving the LHS and RHS the same type.

Finally, ISLE’s type system supports automatic type conversions. In the iadd

example, such conversions apply to x and y, which are variables of type Value

bound by the left-hand side of the rule. The RHS, in contrast, operates on x and y

Registers. To reconcile these incompatible types, the ISLE compiler automatically

inserts type conversions if a conversion rule has already been specified for a pair

of types. In this case, ISLE wraps the latter uses of x and y with the user-defined

term put_in_reg, which converts Values to Regs.4

4.2.3 ISLE by Example: Lowering Rotations

In this section, we walk through Cranelift’s lowerings for a few specific instructions;

this sets us up to verify such lowerings in the next section (Section 4.3).

Consider the Wasm rotl and rotr (“rotate”) binary numeric instructions,

which shift the bits of a value left or right with wraparound. Cranelift has corre-

sponding rotl and rotr IR operations. The ARM aarch64 ISA has a single imple-

mentation of rotate—ROR—which has a corresponding ISLE term named a64_rotr

that includes an additional parameter to specify the 64-bit or 32-bit variants of

the instruction.

A simple attempt at lowering rotr instructions to the ARM aarch64 backend

might look like this:

3We elide an indirection via another type for clarity.
4We describe the semantics of put_in_reg in Section 4.3.1.
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(rule

(lower (rotr x y))

(a64_rotr I64 x y))

This rule lowers to the 64-bit variant (I64) of a64_rotr. It works properly for 32-

and 64-bit values, but not for narrower values (e.g., 8-bit values). This is because

Cranelift operates on narrow values of w bits by placing them in 64-bit registers but

considering only their lowest w bits to be meaningful. To see how the above rule is

broken for 8-bit values, imagine it matching in a situation where x is #b00000001.

Placing this value in a 64-bit register and attempting to right-shift it by one moves

the right-most 1 bit to the highest bit of 64 —not the expected result of 64 bits

with #b10000000 as the lowest eight!

Cranelift must instead special-case on narrow values:

(rule

(lower (has_type (fits_in_16 ty) (rotr x y)))

(small_rotr ty (zext32 x) y))

This rule uses external helper terms has_type and fits_in_16 to predicate this

rule only on narrow types; if the number of bits (ty) is larger than 16, the rule

will not match. The helper terms are defined externally from ISLE, in Rust code

that returns the value’s type (has_type) and checks the type against the integer

sixteen (fits_in_16), respectively. This rule also abstracts over types (lowering

the burden on the compiler engineer): the rule binds a new variable, ty, to the

type of the return value of rotr, and passes ty through as an argument to the

right-hand side.

The rotate rule also uses an intermediate term, small_rotr. small_rotr only
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ever exists in ISLE—not in the resulting machine code—and is an intermediate

step along the path to a final machine code representation. Intermediate terms like

small_rotr let developers share logic across many different rules. As one example,

Cranelift’s rotl (rotate left) rule for narrow inputs also uses the small_rotr term.

The compiler uses a small_rotr with a negated rotate amount because ARM does

not have a distinct rotate left instruction:

(rule

(lower (has_type (fits_in_16 ty) (rotl x y)))

(let (( neg_amt Reg (a64_sub I32 (zero) y)))

(small_rotr ty (zext32 x) neg_amt)))

This rule is the same as the previous one with two additions. First, it uses a let

clause to include another ISA instruction: an ARM a64_sub subtraction instruc-

tion, negating the value y by computing 0 ´ y. Second, the rule wraps x on the

right-hand side with a call to zext32, which zero-extends (that is, left-pads with

zeros) the value of x up to 32 bits. Finally, to lower small_rotr to ISA-level

operations, the Cranelift ISLE rules specify that narrow rotates can be composed

of aarch64-native left shift and right shift instructions (not pictured). Thus, these

ISLE rules lower a single IR instruction to multiple machine code instructions

(a64_sub followed by shift and bitwise or instructions).

4.2.4 Satisfiability Modulo Theories (SMT)

To verify lowering rules written in ISLE, VeriISLE uses an Satisfiability Modulo

Theories (SMT) solver [De Moura and Bjørner(2008)]. SMT solvers are tools that

determine whether logical formulas are satisfiable for some assignment of values to

91



all variables in the formula.

Unlike SAT formulas [Moskewicz et al.(2001)], SMT formulas allow users to

express higher-level statements (e.g., “x < y[2]”) using a rich set of operators

and types (e.g., integers and arrays) that are defined in the SMT-LIB stan-

dard [Barrett et al.(2010)]. VeriISLE lowers ISLE rules to SMT formulas in the

theory of bitvectors and integers; we discuss this further in the next section.

4.3 VeriISLE Design

VeriISLE is a framework for verifying rewrite rules in the ISLE domain-

specific language for instruction selection. VeriISLE uses an SMT

solver [De Moura and Bjørner(2008)] to show functional equivalence of the left-

and right-hand sides of individual rules.5 An equivalent left and right side mean

that the rule has preserved IR semantics at the machine code level; a differing left

and right side indicate a bug in the lowering.

To verify their lowering rules, compiler developers write annotations on ISLE

terms in VeriISLE’s annotation language (Section 4.3.1). This language makes

it simple to express term semantics (e.g., that fits_in_16 means that a type

can losslessly be represented with 16 bits). VeriISLE consumes ISLE’s program

representation for rules, combines this with the compiled annotations to create

its own intermediate representation, and performs type inference (Section 4.3.1).

Type inference is necessary for VeriISLE to lower its IR to an SMT formula, a

logical formula that asks whether a rule’s right and left-hand sides are equivalent.

5Though VeriISLE supports more general custom verification conditions, as we will describe
later in this section.
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Finally, VeriISLE feeds the resulting formula into the SMT solver. If the right and

left-hand sides of a rule differ, the solver returns a counter-example showing a set

of inputs that cause the divergence; otherwise, the rule is verified.

In this section, we walk through the verification pipeline, from VeriISLE’s an-

notation language (Section 4.3.1) to how it constructs and customizes verification

conditions (Section 4.3.2).

4.3.1 The Annotation Language

It is impossible to verify functional correctness without precise semantics on

terms within ISLE. While there are formal semantics for certain ISAs (e.g.,

ARM [Armstrong et al.(2019)] and Intel [Dasgupta et al.(2019)]), there are no se-

mantics for Cranelift’s intermediate representation—or for ISLE helper terms (e.g.,

has_type) and intermediate terms (e.g., small_rotr). The challenge in specifying

these semantics is that production compilers are living software: engineers change

rules, add rules, and occasionally add entire new back-ends. To support modular

verification of an evolving codebase, VeriISLE introduces an annotation language

that allows rule authors to define specifications as they go, introducing a term’s

semantics inline, next to the term itself.

For example, consider our annotation on the helper term fits_in_16:6

(spec (sig (args arg) (ret))

(provide (= ret arg))

(require (<= arg (16: Int))))

(decl fits_in_16 (Type) Type)

6ISLE terms and specification syntax lightly edited for clarity and brevity.
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xannoty ::= (spec xsigy (provide xexy`) (require xexy`))

xsigy ::= (sig (args xboundy`) (xboundy))

xboundy ::= (xidenty : xtypey)

xtypey ::= bv | bv xinty | Int | Bool
xwidthy ::= xinty | xexy

xconsty ::= true | false | xinty | xbitvectory

xexy ::= xidenty | xconsty | xencodingy xexy` | (xunopy xexy) | (xbinopy xexy xexy)
| (xconvy xwidthy xexy) | (extract xinty xinty xexy) | (int2bv xwidthy xexy)
| (bv2int xexy) | (widthof xexy) | (concat xexy`)
| (if xexy xexy xexy) | (switch xexy (xexy xexy)`)

xunopy ::= ! | ~ | - | ...

xbinopy ::= = | != | >= | <= | < | > | sgt | sgte | slt | slte | ugt | ugte | ult
| ulte | + | - | * | sdiv | udiv | srem | urem | & | | | xor | sdiv | rotl | rotr
| shl | shr | ashr
xconvy ::= sign_ext| zero_ext | convto
xencodingy ::= cls | clz | rev | subs | popcnt

Figure 4.1: VeriISLE’s annotation language, which combines SMT-LIB constructs
with conveniences (e.g., switch) and VeriISLE-specific constructs (e.g., convto

and widthof).

This specification says that fits_in_16 is a partial identity function on the

argument type Type—that is, for the arguments on which fits_in_16 is defined,

it returns the argument itself. The function is specified by the provide clause (=

ret arg), which sets the return value equal to the first argument; both variables

are bound in the spec signature. require clauses specify a preconditions on the

term. This precondition specifies that the rule is a partial function predicated on

(<= arg (16:Int))—the fact that the argument, which VeriISLE maps to the

SMT-LIB theory of integers, is less than or equal to 16. In ISLE, partial functions

are used to determine whether a rule matches: if any term on the left-hand side is

undefined, the rule does not match. In sum, these three lines of specification are

enough to describe the semantics of fits_in_16: it is a partial identity function

that returns the type argument arg, which matches if arg is under sixteen bits.
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The annotation language grammar and semantics

Figure 4.1 shows the VeriISLE annotation language grammar. Most operations in

the annotation grammar map directly to SMT-LIB constructions. For example, +

applied to a bitvector maps to SMT-LIB’s bvadd bitvector addition function.

VeriISLE adds conveniences like switch and a variadic concat operation,

both of which desugar to folding SMT-LIB’s fixed-argument ite (if-then-else) and

concat (bitvector concatenation) operators over any number of arguments. switch

also adds a verification condition that enforces that its branches are exhaustive,

which has helped surface faulty annotations.

VeriISLE provides constructs for introspecting on and modifying bitvector

widths. widthof returns the width—often only known directly at solving time

(Section 4.3.2)—of a given bitvector value. convto changes the width of its bitvec-

tor argument with the following semantics: if the destination width is more narrow,

convto extracts the relevant bits; if the destination width is wider, convto leaves

the upper bits unspecified by concatenating a fresh SMT variable with unrestricted

bits.

VeriISLE also provides higher-level versions of SMT-LIB constructs. For ex-

ample, SMT-LIB rotates must have statically-provided widths; VeriISLE instead

offers symbolic rotates, which it implements with shift and bitvector logic instruc-

tions. Finally, VeriISLE includes keywords that map to custom encodings in its

backend: (1) cls and clz, which count the number of leading sign and zero bits,

respectively (Section 4.4.3), (2) rev, which reverses the order of bits, (3) subs,

which performs subtraction-with-flags, and (4) popcnt, which counts the number

of 1 bits.
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provide blocks specify the semantics of a term, typically by relating the re-

turned value bound in the specification to one or more of the arguments. require

blocks specify preconditions, which are assumed when a term is used on the left-

hand side of a rule but checked—that is, verified to hold—when a term is used

on the right-hand side of a rule. This is analogous to more traditional Hoare-style

verification [Hoare(1969), Barnett et al.(2005)], where function preconditions may

be assumed within the body of a function but must be checked at function call

site.

For example, small_rotr requires that the amount being rotated has been

zero-extended from the narrow starting width to the full 64 bits of the register.

This can be specified as:

(require (switch ty

((8: Int) (= (extract 63 8 x) (0:bv)))

((16: Int) (= (extract 63 16 x) (0:bv)))))

This require clause say that the type ty is 8 or 16, and that the relevant bits

beyond index ty have been zero-extended. This must be proven true for a term

that uses small_rotr on the right-hand side, but is assumed true for terms that

rewrite from a small_rotr on the left-hand side.

The annotation language type system

Types in VeriISLE are integers, booleans, and bitvectors. The VeriISLE anno-

tation language must support polymorphism over bitvector widths, since most of

Cranelift’s ISLE rules operation on its Value type, which is polymorphic over

integer values in the Cranelift intermediate representation. (Section 4.2.2).
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For example, during preprocessing, ISLE automatically inserts put_in_reg

to implicitly convert Cranelift IR Values to machine code Regs—and because

Values vary in width, VeriISLE’s annotation language must provide a polymorphic

type signature to put_in_reg. In other words, put_in_reg must reconcile the

potentially narrow Value with the 64-bit Reg. VeriISLE’s put_in_reg annotation

uses convto to reinterpret the polymorphic bitwidth of the argument as 64 bits:

(spec (sig (args arg) (ret))

(provide (= (convto (64: Int) arg) ret)))

(decl put_in_reg (Value) Reg)

Type inference

The annotation language supports polymorphism over bitvector types, but its tar-

get representation does not: all bitvector operations in SMT-LIB operate on fixed-

width bitvectors [Niemetz et al.(2019)]. Therefore, VeriISLE must transform its

high-level intermediate representation, which allows polymorphic bitvector types,

into several SMT formulas, each over a different set of bitvector widths. VeriISLE

uses two passes of type inference to determine those widths. The first inference

pass produces an assignment of SMT types (e.g., bitvector) for each variable in a

term or its specification. The second pass resolves the bitvector widths.

First pass. First, VeriISLE runs a variant of classic unification-based type infer-

ence [Martelli and Montanari(1982)] in order to rule out type errors between an-

notations. This first pass yields an SMT type (kind)—either an integer, boolean,

or bitvector—for each variable in both the specification and the term it describes.

The first pass, however, does not necessarily resolve the width of each bitvector.
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VeriISLE is not always able to resolve types via the first unification pass because

types in ISLE are polymorphic at the time ISLE generates Rust for code generation

(e.g., the type Value does not have a specific width when ISLE is being processed).

For example, the width of the value of small_rotr depends on the value of an

argument passed in, ty. Thus, VeriISLE finishes resolving bitwidths in a second

typing pass.

Second pass. During the second type inference pass, VeriISLE uses an SMT

solver to resolve unknown bitvector widths. This pass takes terms and their spec-

ifications as input, along with the types that the first inference pass resolved. It

models bitvectors as an over-approximation of their width (i.e., with bitwidth 64)

and uses integer SMT variables to model the widths of each subexpression.

For each rule, we provide a set of possible type instantiations for the root left-

hand side term (that is, a set of possible types for the argument and return values,

based on Cranelift semantics). For example, for a simple Cranelift IR type such

as iadd, the set of type instatiations is pt, tq Ñ t for t in ti8, i16, i32, i64u (e.g.,

pi8, i8q Ñ i8).

For a more complicated term that involves modifying the Cranelift IR width of

the input and output, we consider a wider set of instantiations. For example, for

extending values, we consider multiple output types per argument type:

sÑ d

for s in ti8, i16, i32, i64u

for d in ti8, i16, i32, i64u if d ě s

Most terms on the right-hand side of Cranelift’s ISLE rules operate on types
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modeling registers, instead of values in the intermediate representation. Cranelift’s

invariant for narrow types placed in registers is that low bits are defined and high

bits are undefined, so we encode registers as 64-bit bitvectors with potentially-

unspecified high bits.

For most rules, this second pass produces a single possible type assignment.

For some rules, there are multiple valid type assignments—in this case, we con-

tinue the verification process until the SMT solver says there are no more unique

possible type assignments (similar to counter-example guided inductive synthe-

sis [Abate et al.(2018), Solar-Lezama et al.(2006)]).

4.3.2 Generating Verification Conditions

Once VeriISLE has run type inference—yielding a low-level, typed intermediate

representation—it can lower that representation to an SMT formula(s) that ex-

presses equivalence of the right and left-hand sides of a lowering rule. When

VeriISLE invokes the solver on the formula, there are three possible outcomes:

1. Success: the rule is verified.

2. Failure with counterexample: the rule is broken, and the solver provides

a set of inputs that exposes the bug, formatted in ISLE surface syntax.

3. Rule inapplicable: for the given type instantiation, the rule does not

match. This indicates that the rule contains predicates on the left-hand

side—or guarded if/if-let clauses (see Section 4.4.4)—such that the rule

never matches on this type instantiation.

To produce these 3 outcomes, VeriISLE uses (at least) two additional SMT queries.

99



The first query determines if the rule is applicable by querying the solver to see if

there exists a model in which all the necessary preconditions hold; if not, VeriISLE

produces a Rule inapplicable result. The second query determines whether the

lowering rule preserves equivalence; if so, Success, and if not, Failure with

counterexample.

For each query, VeriISLE’s formula for a given rule combines the semantics

and preconditions of Cranelift IR terms, ISA terms, and external and intermediate

terms—all provided by annotations—with the semantics of the ISLE language itself

(e.g., if-let and other language constructs). VeriISLE combines semantics across

term annotations via a recursive descent over the rule’s RHS and LHS, equating

corresponding arguments and return values.

The first query: applicability

Let i0 . . . in´1 be input variables in the LHS of a rule, ALHS be the set of SMT

variables generated by the recursive descent on the LHS (and analogously RHS),

PLHS and RLHS be the set of provide and require predicates in all annotations

on the LHS (and analogously RHS). A rule is applicable if there are some inputs

such that the LHS and RHS are both defined:

Dti0, . . . , in´1uYA
LHS

YARHS
|PLHS

^RLHS
^PRHS

(4.1)

Recall that this query does not ask about equivalence; it asks whether the rule

applies at all, to at least one input. Including the RHS SMT variables (ARHS)

and provide expressions (PRHS) in this initial query helps catch overly restrictive

annotations. For instance, a vacuously false assertion in a provide annotation

on the RHS should make the rule fail the applicability check (otherwise, the next
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step would be unable to find any counterexamples—because in first order logic,

false implies anything). Including PRHS in the query makes such a rule fail at the

applicability check.

The optional model distinctness check. The applicability check succeeds as

long as at least one assignment of input terms is applicable—even if there is just

one set of applicable inputs. VeriISLE implements an optional check that looks

for distinct input sets (i.e., checks that multiple SMT models are feasible in which

every bitvector input term is distinct). VeriISLE creates a formula that asserts

that each bitvector input differs from the one in the original model; if the query

is unsatisfiable, there is only one set of matching inputs. This check identified a

previously unknown bug where an ISLE rule never fired in practice (Section 4.4.4).

The second query: equivalence

If the first query succeeds, VeriISLE constructs another SMT query to determine

equivalence. Let retLHS be the value returned by the outermost LHS term and

retRHS be the value returned by the outermost RHS term. A rule is correct if

assuming (1) the semantics of the LHS and RHS terms and (2) preconditions of

the LHS implies (1) the equivalence of the LHS and RHS and (2) preconditions

on the RHS terms:

@ti0, . . . , in´1u Y A
LHS

Y ARHS
|

pPLHS
^RLHS

^ PRHS
q ñ pretLHS

“ retRHS
q ^RRHS (4.2)

To convert this statement to an SMT query, VeriISLE plays the standard trick of

asking if there are counterexample inputs such that the verification conditions do
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not hold (by switching the quantifier to an existential and negating the implica-

tion).

Verification conditions for narrow widths. ISLE’s type system itself conveys

to VeriISLE which bits are demanded to produce the right verification conditions.

For many rule and type instantiation pairings, the expression retLHS (the returned

value from the outermost LHS term) has a width narrower than 64 bits. The RHS,

however, typically operates on register-width values with 64 bits. In such cases

of mis-matched widths, the condition VeriISLE verifies aligns with Cranelift IR’s

intended invariant: that the lower bits of the register are equivalent to the Cranelift

IR semantics on the narrow width. We implement this condition in VeriISLE by

adding an annotation on the output_reg term, which the ISLE preprocessor inserts

as an automatic type conversion:

(spec (sig (args arg) (ret))

(provide (= ret (convto (widthof ret) arg))))

(decl output_reg (Reg) InstOutput)

The convto in this annotation narrows the bits of Reg in consideration to the bit

demanded by the width of the InstOutput (which models the potentially narrow

Cranelift IR type).

Optional custom verification conditions and assumptions. Some compiler

transformations intentionally break strict equivalence. For example, Cranelift at-

tempts to rewrite comparisons that include a statically-known argument to prefer

an even integer immediate: as a mathematical identity, A ě B ` 1 Ñ A ´ 1 ě

B Ñ A ą B. This rewrite is profitable because even values are more likely to fit
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in ARM64’s 12-bit immediate encodings, improving code size.

The rule that implements this identity is closely tied to how comparisons are

emitted to machine code. On ARM, comparisons are done by a subtraction-with-

flags and then comparing those flags again the condition code for the specific

comparison (in this example, ě vs ą). The relevant rule acts on terms that that

produce the ISLE type FlagsAndCC, rather than a boolean value directly. Since

the mathematical identity changes the values of both the flags and the condition

code, VeriISLE reports a verification failure on this and similar rules.

Optionally, users can run VeriISLE with custom verification conditions instead

of checking strict bitvector equality of the LHS and RHS. In this case, VeriISLE

can encode the logic that flattens flags and a condition code into a boolean in order

to prove that the boolean result of the comparison maintains equivalence. Users

can also provide VeriISLE with additional assumptions on input values, which we

use to encode cases where a rule would not match due to ISLE’s priority semantics.

4.3.3 Implementation and Trust Model

VeriISLE is implemented 15,825 lines7 of Rust as a fork of the Wasmtime codebase.8

We run VeriISLE queries as a Rust test suite in continuous integration on our

Wasmtime fork. VeriISLE is designed to be useful to compiler engineers who

are not experts in verification tooling; VeriISLE lifts counterexamples from the

SMT model back into ISLE syntax to make debugging easier. VeriISLE can also

test rules against specific concrete inputs (i.e., run as an interpreter), allowing

developers to test their annotations against their expectations (and paving the

7Plus 26,465 lines for our auto-generated annotation language parser.
8Forked at commit 9556cb1.
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way for future work in fuzzing VeriISLE’s annotations).

Caveats and the trusted computing base. VeriISLE is limited to reason-

ing about individual rewrite rules written in ISLE; it reasons about correctness in

instruction lowering itself, but trusts other passes in the Cranelift compiler and

Wasm runtime. Cranelift and the Wasmtime engine invoke instruction selection

after WebAssembly safety checks are inserted, but prior to a couple final com-

piler stages (e.g., register allocation).9 VeriISLE also trusts the semantics of ISLE

terms as written in the annotation language (though our provide and require

distinction and concrete tests help find bad specifications). For example, we found

that an old version of VeriISLE did not require condition codes to fall into a valid

range. Finally, VeriISLE currently reasons about each rule individually. Support

for verifying properties over multiple rules (e.g., reasoning about rule priorities) is

future work.

4.4 Evaluation

This section answers the following evaluation questions:

Q1 Can VeriISLE be applied to a meaningful set of ISLE rules?

Q2 For test and benchmark suites for WebAssembly and Rust, what proportion

of invoked ISLE rules has VeriISLE verified?

Q3 Can VeriISLE reproduce prior, known Cranelift bugs?

9Cranelift also has a distinct symbolic translation validation checker for register allocation; this
shows how engineers can take an ensemble approach to applying formal methods in a production
setting.
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Q4 Can VeriISLE help identify and fix new bugs?

We answer Q1 by verifying a natural subset of rules, those necessary

to compile integer computations in the latest major release of WebAssembly

(“1.0” [Rossberg(2019)]). Section 4.4.2 addresses Q2—we find that the rules we

verify comprise 19.8% of the lowering rules invoked by the WebAssembly reference

test suite.

To answer Q3, we choose two previously-discovered CVEs in ISLE rules (out of

14 Wasmtime CVEs, 10 of which do not involve ISLE); we also select an ISLE bug

that was not assigned a CVE because it affects non-Wasm types. We annotate the

buggy rules and present the counterexamples VeriISLE produces in Section 4.4.3.

Finally, in Section 4.4.4 we address Q4, outlining 3 new faults (2 patched) that

VeriISLE discovered, and 1 compiler mid-end bug that VeriISLE helped root-cause

and patch. These case studies highlight that instruction-lowering rules are error-

prone even for experienced compiler engineers: many of the issues were subtle

interactions between constants, sign- and zero- extensions, and tricky bitwidth-

specific reasoning. Moreover, to our knowledge, no new bugs have been discovered

by any other means (e.g., any Cranelift fuzzers [Arteaga et al.(2022)]) in rules

verified by VeriISLE.

4.4.1 Is VeriISLE Applicable to Real Rules?

We use VeriISLE to verify the instruction-lowering rules for all integer operations10

from WebAssembly’s 1.0 release to the ARM aarch64 backend. In addition, we

10All operation defined under section “4.3.2 Integer Operations” of the WebAssembly Specifi-
cation Release, 1.0
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Rules Type Instantiations
Total 96 388

Success 84 (all types) / 93 (any type) 217
Timeout 10 (any type) / 1 (all types) 28

Inapplicable N/A 139
Failure 2 (0) 4 (0)

Table 4.1: VeriISLE verification results for Cranelift ISLE rules and type instanti-
ations (because rules match on multiple possible types, potentially with different
verification results) for integer operations from WebAssembly 1.0 to Arm aarch64.
Note that the failures all succeed with custom (rather than bitvector equivalence)
verification conditions.

verify most of the new integer operations in WebAssembly’s 2.0 version, which

is currently in draft status [Rossberg(2023)]. We choose these rules because We-

bAssembly uses integers for addressing computations, which means that logical

issues in integer codegen can lead to security vulnerabilities. We verify aarch64

rules because this backend is less well-tested than x86-64. The ARM backend

rules we do not verify fall into four categories: (1) i128 types; (2) floating point;

(3) SIMD (vector) instructions; and (4) side effects and control flow. We discuss

further in Section 4.6.

Verification requires 182 total annotations (1075 lines of code). For

some ISA terms, we modify or cross-reference formal semantics from SAIL-

ISLA [Armstrong et al.(2019), Armstrong et al.(2021)], a symbolic execution en-

gine for ISAs. For Cranelift IR and external Rust terms, we refer to WebAssembly’s

specification, Cranelift documentation, and the external Rust definitions.

In total, our verification effort covers 96 distinct rules with 388 type invocations,

since each rule is tested against 1 to 10 possible type assignments. For most rules,

we consider all Cranelift-supported integers up to 64 bits (i.e., i8, i16, u/i32, and u

/i64), though we note that WebAssembly 1.0 only supports 32-bit and 64-bit num-

bers. rustc_codegen_cranelift, an alternative backend for the Rust language,
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uses the narrower types VeriISLE supports [Nelson(2020), Baron et al.(2023)].

Table 4.1 shows the verification results for all 388 total type invocations. Re-

call that the six verification failures do not represent real bugs, since the context

in which they are used does not require bitvector equivalence. With custom ver-

ification conditions, these rules verify successfully. 360 of the 388 invocations

complete, in sum, within 5 minutes on a laptop.11 The 10 rules that timeout on

some type instantiations contain multiplication, division, remainder, and popcnt

operations on bitvectors, which are difficult for SMT solvers to reason about for

wider widths [Jha et al.(2009)].12 Each of these rules fails with a counterexample

within 10 seconds if we inject a flaw in the rule logic.

4.4.2 What Proportion of Invoked Rules has VeriISLE Ver-

ified?

We instrument Cranelift to determine, on various targets, what proportion of in-

voked ISLE rules VeriISLE has verified. For the WebAssembly reference test suite,

VeriISLE verifies 19.8% (50/253) of the unique ISLE rules used during compilation.

(We use a version of the WebAssembly specification’s test suite that corresponds

to the language features in Wasm 1.0, which notably excludes SIMD instructions.)

To assess our coverage on integer types narrower than those that Wasm supports,

we repeat this experiment on the rustc_codegen_cranelift test suite, an al-

ternative backend for the Rust compiler that uses Cranelift as its code genera-

tor [Nelson(2020), Baron et al.(2023)]. Verified rules make up 15.8% (24/152) of

11We run experiments on a MacBook Pro Apple M2 Max, 12-core CPU, 32GB RAM, macOS
13.2.1.

12Timed out after 6 hours, run in parallel with other tests.
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the unique ISLE rules used during compilation. These numbers will grow as we en-

hance VeriISLE to additional memory operations and floating point (Section 4.6).

4.4.3 Can VeriISLE Detect Known Bugs?

To answer our third question, we use VeriISLE to detect three known, recent

Cranelift bugs. We select these bugs for their severity and because they occur in

ISLE rules in scope for the current version of VeriISLE.

x86-64 addressing mode CVE (9.9/10 severity)

In under one second on a laptop, VeriISLE detects a 2023 CVE in x86-64

instruction lowering that permitted a WebAssembly sandbox escape (Sec-

tion 4.1) [Crichton(2023)]. The reproduction requires 13 new annotations to sup-

port terms in the x86-64 backend, which we had not previously covered (Sec-

tion 4.4.1).

The bug appeared in this ISLE rule:13

(rule

(amode_add (Amode.ImmReg off base)

(uextend (ishl x (iconst shft))))

(if (u32_lteq shft 3))

(Amode.ImmRegRegShift off base

(extend_reg x I64 (Extend.Zero)) shft))

This rule intends to take advantage of an x86-64 addressing mode that allows

13Lightly edited for brevity
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shifts to be computed within the instruction itself, before adding together address

components. However, the core problem with this rule (Section 4.1) is that the

LHS performs a shift on a 32-bit value (throwing away any bits that are shifted

left beyond 32 bits), while the RHS performs the shift on a 64-bit value (throwing

away bits shifted left beyond 64 bits), which lets the emitted shift modify bits

beyond WebAssembly’s effective address space.

To see how the problem manifests, we walk through the rule. The outermost

LHS term, amode_add, is an intermediate term that earlier rules construct to model

memory address computations that can be folded into addressing modes. The sec-

ond argument of the match, (uextend ...), is a Cranelift IR value that is a zero-

extended (uxtend) shift operation (ishl) with a statically known, constant shift

amount (shft) (conceptually (i64.extend_i32_u (i32.shl <x> (i32.const <

shft>)))). The rule’s if clause checks that the shift amount, shft, is less than or

equal to 3. If all the above conditions hold and the rule matches, it emits a single

addressing mode where the value x to be shifted is zero-extended, shifted by the

static shft amount, and added to the other components of the computed address

(base + off).

VeriISLE provides the following counterexample:14

(amode_add

(Amode.ImmReg

[off|# x30c04100] [base|# x0000000000000000 ])

(uextend

(ishl [x|# xd0000920] (iconst [shft|#x02])))) =>

(Amode.ImmRegRegShift

[off|# x30c04100]

14Lightly edited for brevity.
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(gpr_new [base|# x0000000000000000 ])

(extend_to_gpr [x|# xd0000920] I64 Extend.Zero)

[shft|#x02])

#x0000_0000_70c0_6580 => #x0000_0003_70c0_6580

In this counterexample, the 32-bit value x, #xd0000920, has the most significant

bit set. When x is shifted by the specified 2 bits to the left, the results differ on

the LHS and RHS. As expected, the LHS throws away the shifted bits after 32 bits

(e.g., the higher 32 bits of #x0000_0000_70c0_6580 are zero). However, the RHS

does not throw away the shifted bits after 32 bits, allowing non-zero bits beyond

the expected effective address space: #x0000_0003_70c0_6580!

The patch for this bug simply removes the rule entirely, so we did not verify

the patch with VeriISLE.

aarch64 unsigned divide CVE (moderate severity)

VeriISLE reproduces a 2022 CVE in aarch64 instruction lowering in which divides

with constant divisors were miscompiled. In this case, trying to write annotations

was enough to highlight the root cause of the bug—that constant values, when

used as divisors, were not correctly sign- or zero-extended according to signed or

unsigned division.

The ISLE rules that matched on constant divisors for both udiv and sdiv

—unsigned and signed divide—used the term imm on the RHS. imm models an

immediate value that can be encoded in a machine instruction itself, lowering
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both the number of instructions and register pressure. At the time of this CVE,

the ISLE signature for imm was:

(decl imm (Type u64) Reg)

This term’s intention was to take the immediate’s value as a u64 and place it in

a register. When trying to annotate this term and the terms for signed constant

divisors, though, an issue was immediately clear: imm provides no argument for

whether narrow values should be sign- or zero-extended. Annotating zero-extension

causes signed division to fail; choosing sign-extension causes unsigned division to

fail. In practice, the external Rust implementation sign-extended, so the bug

surfaced in udiv instructions. The patched version of imm takes in an argument

for the type of extension, and the rules for udiv and sdiv now successfully verify.15

aarch64 count-leading-sign bug

VeriISLE reproduces a pre-existing bug in the ISLE aarch64 lowering rule for cls,

the instruction that counts the number of leading sign bits in a value (excluding

the sign bit itself). The rule for narrow cls instructions must extend its input

values, since Cranelift IR supports operations on narrow types like i8 and i16,

while aarch64 only supports operations on 32- and 64-bit values. Unfortunately,

the faulty version of the rule failed to properly extend:

(rule

(lower (has_type I8 (cls x)))

(a64_sub_imm I32 (a64_cls I32 (zext32 x)) 24))

This rule matches on cls computations over 8-bit values. The RHS extends 8-bit x

15Though as noted previously, VeriISLE times out on some wide divisions.
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to 32 bits using zext32, and then computes a64_cls on this wider value. Finally,

it subtracts 24 bits (32 ´ 8) to obtain the leading bit count on the narrow type.

VeriISLE reports the following counterexample:

(lower (has_type I8 (cls [x|# b11111100 ]))) =>

(output_reg

(a64_sub_imm I32

(a64_cls I32 (zext32 [x|# b11111100 ])) 24))

#b00000101 => #b11111111

In this counterexample, the LHS correctly computes that the value #b11111100

has 5 leading sign bits (1), excluding the sign bit itself. The RHS, however, zero-

extends this value to 32 bits, then counts the new leading sign (0) to produce 23,

and subtracts 24 to produce -1. The amended version of the rule uses a sign-extend

instead of a zero-extend, and VeriISLE verifies it successfully.

4.4.4 Can VeriISLE Find New Bugs?

This section outlines VeriISLE’s discoveries in Cranelift so far: two bugs, both

patched; a case of imprecise semantics; and a root cause analysis.

Another addressing mode bug

VeriISLE discovered a new correctness bug in an x86-64 addressing mode rule

related to the one discussed in Section 4.4.3 (which was not identified by Cranelift

engineers even in a subsequent close look at addressing mode rules). This rule was
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identical except that it did not have an explicit uextend (line 3 in Section 4.4.3)—

the same bug could surface on a direct load of a 32-bit address. Cranelift developers

determined that the bug would not be triggered in practice because on 64-bit

targets, all addresses should be 64-bit typed, and front ends generate code in this

form. However, nothing in the compiler backend validated this IR invariant and the

bug could be triggered if front-end implementations changed. Cranelift engineers

patched this issue immediately after we notified them of VeriISLE’s result.

Flawed negated constant rules

VeriISLE found an issue where 3 rules were unintentionally restricted to never fire

in practice. This was a performance issue—optimizations did not apply as often

as they should—but not a correctness issue. The three buggy rules all, in various

ways, attempted but failed to find small, constant arguments that could be encoded

in ARM’s imm12 encoding. This is an optimization because it is an alternative to

the more expensive option of using a separate load-immediate instruction.

This is one of the buggy rules VeriISLE discovered:

(rule

(lower (has_type (fits_in_64 ty)

(isub x (imm12_from_negated_value y))))

(a64_add_imm ty x y))

The imm12_from_negated_value term matches when the second argument, after

being negated, can be encoded into ARM’s 12-bit immediate format. Matching

negated constants allows a wider range of numbers to be encoded as immediates:

around 8,000 constant values can be encoded in ARM’s imm12 (12 bits plus a shift
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bit)—checking for negated values as well doubles the number of possible constants.

When run on this rule, though, VeriISLE warns that there are no distinct

models—the rule only matches one set of input values. The issue is in the (external

Rust) implementation of imm12_from_negated_value:

Imm12:: maybe_from ((n as i64).wrapping_neg () as u64)

In Cranelift’s IR, all constant integers are represented with Rust’s u64 type. This

code takes the constant n’s underlying u64 value, negates it, and checks if it fits

into an Imm12 immediate. Unfortunately, for any width of integer narrower than

64 bits, the only value this holds true for is zero! This is because Cranelift has

an informal invariant that when a negative narrow value is stored as a constant,

its value should be zero-extended—not sign-extended—into a u64 representation.

Negating (wrapping_neg) a zero-extended constant always produces a 64-bit value

with with left-filled ones, which will always fail the check Imm12::maybe_from

because the highest bits on the 64-bit value are set.

VeriISLE discovered that, while not incorrect, this rule was useless—it never

matched in practice. Our merged fix corrects this rule to negate the narrow con-

stant and then zero extend it.

Imprecise semantics for constants in Cranelift IR

VeriISLE also found that Cranelift had under-specified semantics for integer con-

stant representations in IR. While most Cranelift front-ends zero-extend narrow

constant values to 64 bits, VeriISLE found that Cranelift’s own parser for unit

tests sign-extends. The issue we filed is the site of ongoing discussion about en-

forcing clear semantics; since then, a fuzzer discovered a bug in Cranelift’s mid-end
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optimizations caused by the same imprecise semantics.

A mid-end root cause analysis

While we designed VeriISLE for ISLE’s lowering rules, we have found that it can

reason about backend-agnostic rewrites—rewrites in the compiler mid end—as well.

In this case study, VeriISLE identified the root cause of a new bug—a boolean

optimization rewriting false to true—before Cranelift engineers identified it.

A Cranelift engineer ran Souper—a superoptimizer for originally designed for

LLVM [Sasnauskas et al.(2018), Mukherjee et al.(2020)]—on a subset of Cranelift

IR to look for additional optimization opportunities. Souper found that Cranelift

was missing the boolean rewrite or(and(x, y), not(y))== or(x, not(y)). To

port this to ISLE, the engineer wrote a new rule with an explicit guard to check

the for a bitwise-not between constants y and z:16

(rule

(simplify (bor (band x (iconst y)) (iconst z)))

(if (u64_eq zk (u64_not y)))

(bor x z))

This rule passed code review and was merged, but broke an integration test with a

wasm trap error that did not point to a root cause. Before the Cranelift engineers

were able to complete a manual investigation, we extended VeriISLE analyze this

rule (e.g., added annotations for mid-end terms) in under two hours. VeriISLE

produced the following counterexample:17

(bor (band [x|#b1] [y|#b1]) (iconst [z|#b0])) =>

16Lightly edited for clarity and brevity.
17Example truncated to 1 bit for brevity.
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(bor [x|#b1] [z|#b0])

#b0 => #b1

VeriISLE surfaces a subtle bug related to the semantics of ISLE’s if construct.

Recall that terms in ISLE are partial functions. The semantics of ISLE’s terms

with external Rust implementations are that a match should continue if the return

value is Some(...) and should not match if any LHS term returns None.

The prior rule’s if desugars to this if-let guard with a wildcard for the

left-hand pattern:

(if (u64_eq zk (u64_not y))) =>

(if -let _ (u64_eq zk (u64_not y)))

Deceptively, because the Rust external definition of term u64_eq in the prior

rule returned Some(false) instead of None (that is, the boolean was defined, just

false) this guard as written always allowed the match to proceed!

To fix this bug, Cranelift engineers re-wrote the guard to actually check for

Some(true). VeriISLE’s analysis also led Cranelift engineers to propose a longer-

term solution—redesigning semantics of if to avoid similar mistakes in the future.

Finally, after the patch was in, a Cranelift engineer said, “this would have taken

me so much longer without the counterexample, really helpful!”

This case study has a another unexpected takeaway: this bug occurred despite

the optimization being harvested from another formal-methods-based tool! While

the Souper superoptimizer is also based on the SMT theory of bitvectors, the subtle

interaction between Souper-IR and ISLE semantics could not have been caught by

Souper itself. This highlights the benefits of VeriISLE’s tight integration with
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ISLE’s own program representation: VeriISLE was able to root-cause this bug

because it must reason about core ISLE semantics.

4.5 Related Work

Compiler verification. Compiler verification research falls into two broad cat-

egories: lightweight verification of (parts of) existing compilers using solvers

(e.g., [Kundu et al.(2009), Lerner et al.(2005), Lerner et al.(2003)]), and clean-

slate, foundational verification using proof assistants [Bertot and Castéran(2013)]

(e.g., CompCert [Leroy(2009a), Kumar et al.(2014)]). Foundational verifica-

tion provides end-to-end correctness guarantees at the cost of time and perfor-

mance: typically, such verification takes experts many years [Stewart et al.(2015)],

and makes serious optimizations impractical. There are manually verified

lowering passes for CompCert [Leroy(2009b)] and CakeML [Tan et al.(2019),

Fox et al.(2017)], but not for production compilers that consider performance a

first-class concern.

Other works use solver-backed methods to verify portions of industrial com-

pilers. Most closely related to VeriISLE, Alive [Lopes et al.(2015)] verifies

LLVM [Lattner and Adve(2004)] peephole optimization rules written in a DSL.

Alive’s main challenge is undefined behavior; in contrast, VeriISLE need not reason

about undefined behavior, but must instead reconcile IR and ISA types. Further

afield, Alive2 [Lopes et al.(2021)] does translation validation on LLVM IR, and

VeRA [Brown et al.(2020)] verifies range analysis in the Firefox JavaScript engine.

Finally, Jitterbug [Nelson et al.(2020)] verifies lowering from BPF, a setting where

instruction selection entails simple “macro expansion” of one instruction at a time.
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WebAssembly verification. VeriWasm proves that individual binaries do not

violate Wasm’s safety guarantees [Johnson et al.(2021)]. VeriWasm does not prove

compiler correctness, though, and places restrictions on how Wasm compilers

can emit native code.18 In [Bosamiya et al.(2022)], the authors present a non-

optimizing compiler to x86-64 that is verified to preserve sandbox safety, and a

non-optimizing compiler from Wasm to Rust; in contrast, we verify the correctness

of a production, optimizing compiler.

There is also work on mechanizing the Wasm specification [Watt(2018)] and

formalizing Wasm in the K framework [Hjort(2020)]. Other verification efforts

look beyond the language and compiler: WaVE [Johnson et al.(2023)] verifies that

interactions between the Wasm runtime and the host OS preserve safety guaran-

tees; SecWasm [Bastys et al.(2022)] extends Wasm’s guarantees using information

flow control; [Protzenko et al.(2019)] bring verified cryptography to Wasm; and

CT-Wasm extends Wasm itself with constant-time guarantees [Watt et al.(2019)].

Synthesizing instruction selectors. The complexity of instruction selec-

tion has inspired work on automatically generating rules based on machine-

language semantics. Because of their focus on portability vs. correct-

ness, many instruction selector generators use ad hoc search procedures

instead of solver-aided techniques [Hoover and Zadeck(1996), Cattell(1980),

Ceng et al.(2005), Dias and Ramsey(2010)]. Others use solver-aided synthesis:

LibFIRM [Buchwald et al.(2018)], for example, uses SMT to synthesize new rules

that cover about 75% of input instructions, while using an existing, handwritten

rule set for the rest. [Daly et al.(2022)] uses a solver to generate high-coverage

18After discovering the amode bug described in the introduction, Cranelift engineers tried to
update VeriWasm to operate on the current version of the backend, but determined it would be
too large of an undertaking.
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selection simple rules for diverse target architectures. Rake [Ahmad et al.(2022)]

synthesizes lowering rules from Halide [Ragan-Kelley et al.(2013b)] to digital signal

processor ISAs, but its focus is on capturing complex data movement mechanics

within vector registers instead of general-purpose instruction semantics. Though

many compilers use a DSL to express instruction selection rules, to our knowledge

VeriISLE is the first tool for verifying existing rules by modeling DSL semantics.

Formal semantics for ISAs. Several efforts formalize ISA semantics,

including the SAIL language [Armstrong et al.(2019)] and the K Frame-

work [Dasgupta et al.(2019)]. In the future, we will extend VeriISLE to exploit

these existing semantic models.

4.6 Future Work

VeriISLE annotations are currently trusted. We can address this issue by deriv-

ing certain annotation from existing formal models. For example, VeriISLE can

integrate SAIL semantics for aarch64 [Armstrong et al.(2019)] and K framework

semantics for x86-64 [Dasgupta et al.(2019)]. While neither Cranelift IR nor ex-

ternal Rust term definitions have formal semantics, we can raise assurance in our

specifications by, for example, verifying them against their external Rust imple-

mentations [Astrauskas et al.(2019), Baranowski et al.(2018), Reid et al.(2020)].

Future work can extend VeriISLE to reason about floating point, more opera-

tions with side effects, some SIMD vector instructions, and wider integers. Veri-

ISLE already incorporates annotations for some 128-bit vector instructions, be-

cause the implementation of popcnt on aarch64 uses them. VeriISLE can also be
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extended to automatically reason about rule priorities and to cover other backends

and the mid-end optimizer.

VeriISLE is meant to be used. We are working to upstream it into mainline

Cranelift, which raises research questions around usability: how can a formal meth-

ods tool best support engineers who are experts in their domain, but not necessarily

in verification? We hope to explore these questions as we improve VeriISLE, and

as we build on VeriISLE to create more comprehensive verification infrastructure

for other parts of the compiler.

4.7 Chapter Summary

Language-based technologies such as WebAssembly promise a more secure com-

puting environment, where hosts can safely sandbox untrusted code to limited

segments of memory. This software-level isolation, though, fundamentally places

an incredibly high burden (full functional correctness!) on the compiler that pro-

duces the final executable in a machine-specific ISA. VeriISLE is a tool for verifying

instruction-lowering rules in one such safety-critical compiler: the Cranelift code

generator. VeriISLE’s key selling point is its modularity—VeriISLE’s annotation

language allows concise semantics of individual terms to be added alongside defi-

nitions in ISLE, a feature-rich instruction-lowering DSL. With VeriISLE, compiler

developers can eliminate instruction lowering logic as a potential source security-

critical vulnerabilities such as sandbox escapes. VeriISLE builds toward a fu-

ture where heavily optimized, production compilers can integrate advanced formal

methods to produce fast and correct machine code.
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CHAPTER 5

CONCLUSION AND FUTURE DIRECTIONS

The three projects in this dissertation all highlight the potential for lightweight

formal methods to free systems engineers from having to choose between efficiency

and correctness. There is a bright future for formal solutions to practical problems

in systems programming, from applications in real-world compilers to building new

paradigms for reasoning about correctness in systems programs.

Production compilers do far more than lower instructions—and we can raise

trust in increasingly complex passes. For example, the Cranelift compiler now

uses an e-graph based mid-end optimizer—making it the first large-scale produc-

tion compiler (to their knowledge [Bytecode Alliance(2023a)]) to use e-graphs as a

unified optimization framework and to share a term rewriting DSL (ISLE) across

mid-end optimizations and instruction selection. Future work can extend SMT-

based verification of rewrite rules to compositionally verify interacting components

of large production compilers. There is also rich potential for work that com-

bines SMT-based verification with complementary approaches, such a fuzzing and

property-based testing against reference implementations and observable run-time

behavior.

There is also a need for new automated formal methods techniques for rea-

soning about control-flow transformations, such as loop-invariant code motion

and global value numbering, in production optimizing compilers. New research

could extend SMT-based verification systems to create infrastructure for compos-

able compiler specification and verification. Security-critical compiler bugs have

arisen due to missed interactions between passes: for example, a lowering pass may

incorrectly assume an earlier optimization zeroes out the upper bits of a narrow
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value. Future systems may need to design new, flexible specification paradigms

to find correctness issues at the interfaces between inter-related compiler com-

ponents. This work is part of a broader push toward multi-language compiler

correctness [Patterson et al.(2022)] and gradual verification [Bader et al.(2018)],

where systems can opt-in to varying levels of specification as they mature.

There is currently an opportunity for rethinking the mechanisms for in-

tegrating across compiler verification tools, especially in the context of spec-

ifications for ISAs and compiler intermediate representations. Automated

compiler verification is a fast-growing area, and different frameworks and

tools for reasoning about program representations abound [Lopes et al.(2021),

Armstrong et al.(2019), Armstrong et al.(2021), Dasgupta et al.(2019)]. Interact-

ing between these systems and semantics, though, is difficult and can require build-

ing one-off translators or manually copying semantics. Future research will rely on

infrastructures that allows users to specify key design-space considerations with

interoperability and reuasbility as first-order goals.

Infusing lightweight formal methods into the compiler and systems program-

ming stacks has the potential to give both engineers and end-users access to more

reliable and efficient systems.
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erating SIMD Vectorized Permutations. In International Conference on
Compiler Construction (CC).

[Franchetti et al.(2006)] Franz Franchetti, Yevgen Voronenko, and Markus
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Püschel. 2015. A Basic Linear Algebra Compiler for Embedded Processors.
In Design, Automation & Test in Europe (DATE).

[Larsen and Amarasinghe(2000)] Samuel Larsen and Saman Amarasinghe. 2000.
Exploiting Superword Level Parallelism with Multimedia Instruction Sets.

131

https://cseweb.ucsd.edu/~lerner/papers/wasm-sfi-ndss2021.pdf
https://cseweb.ucsd.edu/~lerner/papers/wasm-sfi-ndss2021.pdf
https://blog.cloudflare.com/webassembly-on-cloudflare-workers/
https://blog.cloudflare.com/webassembly-on-cloudflare-workers/
https://doi.org/10.1145/2578855.2535841
https://doi.org/10.1145/1542476.1542513


In ACM SIGPLAN Conference on Programming Language Design and Im-
plementation (PLDI).

[Lattner and Adve(2004)] Chris Lattner and Vikram Adve. 2004. LLVM: A
compilation framework for lifelong program analysis & transformation. In
ACM/IEEE International Symposium on Code Generation and Optimiza-
tion (CGO). https://doi.org/10.1109/CGO.2004.1281665

[Lerner et al.(2003)] Sorin Lerner, Todd Millstein, and Craig Chambers. 2003. Au-
tomatically Proving the Correctness of Compiler Optimizations. In ACM
SIGPLAN Conference on Programming Language Design and Implementa-
tion (PLDI). https://doi.org/10.1145/781131.781156

[Lerner et al.(2005)] Sorin Lerner, Todd Millstein, Erika Rice, and Craig Cham-
bers. 2005. Automated Soundness Proofs for Dataflow Analyses and Trans-
formations via Local Rules. In ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL). https://doi.org/10.

1145/1047659.1040335

[Leroy(2009a)] Xavier Leroy. 2009a. Formal verification of a realistic compiler.
Communications of the ACM (CACM) 52, 7 (2009), 107–115. https://

doi.org/10.1145/1538788.1538814

[Leroy(2009b)] Xavier Leroy. 2009b. A formally verified compiler back-end. Jour-
nal of Automated Reasoning 43, 4 (2009), 363–446. https://doi.org/10.

1007/s10817-009-9155-4

[Lopes et al.(2021)] Nuno P Lopes, Juneyoung Lee, Chung-Kil Hur, Zhengyang
Liu, and John Regehr. 2021. Alive2: bounded translation validation for
LLVM. In ACM SIGPLAN Conference on Programming Language De-
sign and Implementation (PLDI). https://doi.org/10.1145/3453483.

3454030

[Lopes et al.(2015)] Nuno P Lopes, David Menendez, Santosh Nagarakatte, and
John Regehr. 2015. Provably correct peephole optimizations with Alive. In
ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI).

[Lopes and Regehr(2018)] Nuno P. Lopes and John Regehr. 2018. Future Direc-
tions for Optimizing Compilers. In ArXiV. https://arxiv.org/pdf/1809.

02161.pdf

132

https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1145/781131.781156
https://doi.org/10.1145/1047659.1040335
https://doi.org/10.1145/1047659.1040335
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1007/s10817-009-9155-4
https://doi.org/10.1007/s10817-009-9155-4
https://doi.org/10.1145/3453483.3454030
https://doi.org/10.1145/3453483.3454030
https://arxiv.org/pdf/1809.02161.pdf
https://arxiv.org/pdf/1809.02161.pdf


[Lu and Hu(2019)] Kangjie Lu and Hong Hu. 2019. Where Does It Go? Refining
Indirect-Call Targets with Multi-Layer Type Analysis. In CCS.

[Mainland et al.(2013)] Geoffrey Mainland, Roman Leshchinskiy, and Simon Pey-
ton Jones. 2013. Exploiting Vector Instructions with Generalized Stream Fu-
sion. In ACM International Conference on Functional Programming (ICFP).
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