
Rethinking OOP in Snap!
Prototypes, Polymorphism & Pedagogy

Jens Mönig
 Snap! Team

 SAP SE
 Walldorf, Germany

 jens.moenig@sap.com

Brian Harvey
 EECS

 University of California, Berkeley
 Berkeley, USA

 bh@berkeley.edu

Jadga Hügle
 Snap! Team

 SAP SE
 Walldorf, Germamy

 jadga.huegle@sap.com

ABSTRACT
Many current novice programming environments offer a "sprite"-
based microworld, in which cartoon-like actor objects interact
with each other and the user by way of events triggering the
execution of stacks of "blocks" representing programming
statements. While such "sprites" can be seen as something akin to
"objects" in professional programming languages they are for the
most part lacking features that are widely considered essential for
learning about "real" OOP, in particular the concepts of classes,
inheritance and polymorphism. We have tried to address this void
by extending our Snap! programming language with prototypical
inheritance for sprites. In this talk we will demonstrate how
learners can explore traditional OOP concepts for abstraction
beginning from concrete sprites, clones and prototypes. We will
also share some preliminary thoughts and experiments on a
revised curriculum pathway for introducing OOP in schools.

 KEYWORDS
OOP, inheritance, polymorphism, prototypes, delegation, Scratch,
Snap, BJC

1 Object-Based vs. Object-Oriented
Sprites in Scratch and the many programming environments

imitating it have striking similarities with "objects" in professional
programming languages: They bundle state, such as x- and y-
positions, size, heading, internal variables etc. and behavior
("scripts" reacting to events, custom blocks defined "for this sprite
only"). However, sprites lack fundamental features that make
OOP attractive for professional programmers. In particular
Scratch-like sprites cannot be composed into larger units, nor can
their properties be abstracted into "blue-prints" for a group or
"kind" of similar specimens. Because of this design choice
Scratch and its derivatives are sometimes referred to as "object-
based" environments, rather than "object-oriented" ones, which
also feature classes, inheritance, message-passing and
polymorphism, as well as means for encapsulating internal
information [1].

The lack of OOP features in Scratch-like novice programming
environments is a problem, because many curriculum
frameworks, e.g. in German states, require students to learn
professional OOP concepts as early as 7th grade in school. As a
consequence, blocks-based programming environments are used

for only a very short first introduction to what is often called
"coding", before even young students are turned towards studying
professional text-based programming languages such as Java, that
offer a classical take on OOP but also lack all the supportive
scaffolding of Scratch and its dialects.

 2 Closures and Dispatch-Procedures
Since Snap! features lexically scoped first-class procedures we

have been able to demonstrate and teach dispatch-procedure-style
OOP for some years. This is made possible by an implementation
that retains a function's original environment (called "context" in
Snap!) even after the function has terminated in such cases where
it returns another function, thus creating a "closure" side effect.

Figure 1: Creating an anonymous dispatch procedure that
serves as a circular buffer object

BLOCKS+ 2018 J. Mönig et al.

Calling the returned "reified" function gives it access to the
otherwise unreachable environment of its originating function.
This way closurized state can be associated with and shared by
functions to the same effect as objects bundle internal state with
methods operating on it [2]. We use this method to demystify
objects by showing the classic "counter" example, but also to
create more complex objects such as a circular buffer for sound-
synthesis. However, dispatch-procedure-style OOP is admittedly
an advanced concept of functional programming and often beyond
the abilities of beginners. Also, sprites in Snap! are built-in
affordances and therefore cannot be created using this method.
Therefore, we felt the need to make "objects" and "inheritance"
more accessible to novices by extending Snap's sprite-microworld
with OOP concepts.

3 Prototypical Inheritance
Over the past two years we have begun to extend our Snap!

programming language with a kind of prototypical inheritance
among sprites that is inspired by Henry Lieberman's delegation
model [3]. Rather than abstracting traits common to a group of
sprites into a "class" like blue-print we introduced arbitrarily deep
parent-child relationships among sprites, in which children can
inherit certain attributes from their parent. Within such a
prototype-clone relationship, children not only assume a parent-
sprite's structure, i.e. the slot-names for field-variables, but also
dynamically inherit their current value. Dynamic inheritance of
values can be compared to class-variables in traditional OO
languages such as Smalltalk. The difference is that children may
override inherited values with their own ones, thus severing the
inheritance-chain on a per-slot basis rather than as a whole.
Children can also restore dynamic inheritance per slot, and even
do so programmatically.

The same rules apply not only to sprite-only "field"-variables
but also to sprite-local custom block definitions and even to built-
in visual attributes, such as x- and y-position, size, costume etc.
This way, the child inheriting the y-position of its parent turtle-
sprite moving in circles can draw a sine-curve simply by
repeatedly changing its x-position at constant speed.

Figure 2: Using a clone and inheritance of the parent’s y-
position to draw a sine-curve

Also, since Snap! is always "live" even when no script is
running, that child-sprite will even follow its parent's y-position
when the user drags the parent-sprite around with the mouse. With
our design we aim to support exploring powerful concepts such as

kind-of relationships through playful tinkering with concrete
sprites in a reactive environment.

4 Nesting Sprites
While "kind-of" relationships facilitate code reuse by grouping

sprites according to their similarities into classes or prototypical
"tribes", "part-of" relationships enable assembling complex
structures out of simple components. Nesting sprites has long
been supported by Snap! In our recent development we have
added ways to nest sprites programmatically using blocks, and to
also programmatically create and modify parent-child
(inheritance) relationships. By supporting both modes - letting the
learner assemble composite sprites and create inheriting
descendants interactively using the IDE, as well writing a blocks-
script to do it programmatically - we aim to provide a gentle segue
for beginners to progress towards more advanced meta-
programming techniques as they feel comfortable to explore
more.

5 Shifting the Perspective on OOP
As we are extending Snap! with Lieberman-style prototypical

inheritance and meta-programming capabilities we are also
designing learning activities that we hope will make high level
OOP concepts more explorable and also more fun for kids and
casual coders. This year we have conducted a number of
workshops both for teachers and children in which we have tried
various aspects. Our evidence so far is only anecdotal, including a
second-hand observation by Eckart Modrow [4] (Uni Göttingen),
that Snap's prototypical inheritance model seems to lend itself
quite well to learn the full OOP syllabus required by the
curriculum framework of the German state of Lower-Saxony.
We've also begun to shift our "story line" from the classic triad of
"inheritance, polymorphism, encapsulation" to a string of more
concrete examples experiencing "first-class-ness, state + behavior,
relationships".

6 Outlook
At the time of writing this not all visual attributes of Snap's

sprites participate in inheritance, e.g. rotation-style, pen attributes
(color, size, shade, down-state). Efforts are ongoing to create and
asses learning materials and evaluate the language design.

ACKNOWLEDGMENTS
Thanks to Henry Lieberman for his enthusiastic intellectual and
emotional support

REFERENCES
[1] Ingalls, Design Principles Behind Smalltalk, BYTE Magazine, August 1981
[2] Abelson, Sussman, Structure and Interpretation of Computer Programs, MIT

Press, Cambridge, MA
[3] Lieberman, Using Prototypical Objects to Implement Shared Behavior in

Object Oriented Systems, MIT AI LAB, 1985
[4] Modrow, Computer Science with Snap!, Uni Göttingen, 2018

