
Envelopes



Topics Addressed

• Env/EnvGen
• doneActions
• ASR/ADSR

• Gates

• Triggering ADSR



Amplitude Through Time

• An important characteristic of sound is its volume as it passes through 
time.  We can this the envelope of a sound.
• Most sounds, like those from instruments, can be subdivided into 

three parts based on their envelope: attack, sustain, release
• The attack in particular plays an important part in discerning what created the 

sound.  For example, removing the attack from a flute’s note will produce an 
almost electronic sound.

• SuperCollider provides several UGens that can be used to shape a 
sound’s amplitude through sound.



Env

• Env, short for envelope, defines a graph with amplitude levels and 
durations in time segments. 

(
Env.new(

[0, 1, 0.4, 0.4, 0], 
[1, 1, 2, 1], 
curve: 'lin'

).plot;
)

1st argument to Env is levels (i.e., amplitudes) 
and the 2nd argument to Env is times in seconds 
to each amplitude.



Combining Signals with Envelopes

?

How can we combine an envelope with a signal mathematically?  MULTIPLICATION



Slide showing combined waves

*

=
This is y-value by y-value multiplication.  
The peak amplitude of the signal is capped 
by the envelope.  

Signal Envelope



EnvGen

• The class Env defines an envelope in much the same way that a 
SynthDef defines a synth.  To create an instance of the envelope on 
the Server, we use EnvGen.
• Like all UGens, EnvGen comes with class methods .ar and .kr.  

When using EnvGen to modulate the amplitude, we should use .kr. 
• .ar is primarily used for audio signals (i.e., the actual samples)
• .kr is primarily used to modulate audio signals

• The class EnvGen is primarily used in conjunction with the class Env.



Simple Example

s.plotTree;

SynthDef(\sineEnv, {
arg freq = 440;
var env, sig;
env = Env.new(

[0, 1, 0.4, 0.4, 0], 
[1, 1, 2, 1], 
curve: 'lin’

);
env = EnvGen.kr(env);
Out.ar(0, SinOsc.ar(freq) * env ! 2);

}).add;

~s1 = Synth(\sineEnv);
~s1.free;

• Note that we are using EnvGen.kr because we will 
modulate the signal (i.e., the sine wave) with this 
object.

• Observe the plot tree when executing the synth.  It 
does not remove itself from the server after the 
envelope is complete.  Imagine a piece that played 
thousands or tens of thousands of notes.  These 
synths use up valuable computer resources.  We 
need to remove synths after they are done 
executing.  
• One option is to free the synth but this 

requires the user to manually execute free 
commands.

• A better option is to use doneActions.



doneActions

• SC’s EnvGen and several other UGens have an optional parameter 
called doneAction which specifies to the server what should happen 
after the envelope completes.
• doneActions are incredibly useful.  Documentation for them can be 

found under the Done class, providing 16 class methods that control 
Synth behavior
• The most useful is Done.freeSelf which removes the Synth from the 

Node tree on the server

EnvGen.kr(Env([0, 1, 0], [1, 1]), doneAction: Done.freeSelf)



doneActions



Simple Example with doneAction

s.plotTree;

SynthDef(\sineEnvDone, {
arg freq = 440;
var env, sig;
env = Env.new(

[0, 1, 0.4, 0.4, 0], 
[1, 1, 2, 1], 
curve: 'lin’

);
env = EnvGen.kr(env, doneAction: 2);
Out.ar(0, SinOsc.ar(freq) * env ! 2);

}).add;

~s1 = Synth(\sineEnvDone);

• Here we change the previous example to 
include a doneAction of 2 which frees the 
node after the envelope is complete

• Note that we don’t need a specific free 
command.  The EnvGen UGen handles that task 
for us.

• doneActions are wonderful and important 
components that remove the user from 
manually handling the job of freeing nodes on 
the server.



ASR
We can form a common envelop pattern called ASR (Attack Sustain 
Release) using the class method .linen.  Note that the sustain is a 
fixed time, though it can be parameterized.

Attack

Sustain

Release

env = Env.linen(0.05, 0.5, 0.1, 0.3, 'sine');

Attack Sustain Release Level

Note that all envelopes accept a curvature which need not 
be a line between points.  See documentation for different 
types of curvature.



ASR Example
(
SynthDef(\shortSine, {

arg freq = 440;
var env, sig;
env = Env.linen(0.05, 0.5, 0.1, 0.3, 'sine');
env = EnvGen.kr(env, doneAction: 2);
sig = SinOsc.ar(freq);
Out.ar(0, sig * env ! 2);

}).add;
)

Envelope for the Env on the left



EnvGen and Gate
• The class EnvGen can also accept an 

additional parameter called a gate which 
can be used to trigger the envelope.

• The gate parameter is a powerful tool that 
we can use to retrigger the same synth.

• Note here that the Synth is never removed 
from the server with a doneAction.  When 
the Envelope finishes the amplitude is zero 
but it it is still ”playing”.

• Note that the gate needs to be reset to zero 
before being re-triggered with a gate of 1

• Gates become more complicated for 
envelopes that do not have a fixed sustain 
duration.  Here though, the .linen class 
method has a fixed sustain so a simple 
trigger of 1 suffices.

(
SynthDef(\gatedSine, {

arg freq = 440, gate = 0;
var env, sig;
env = Env.linen(0.05, 1, 0.1, 0.3, 'sine');
env = EnvGen.kr(env, gate);
sig = SinOsc.ar(freq);
Out.ar(0, sig * env ! 2);

}).add;
)

~s1 = Synth(\gatedSine);
~s1.set(\gate, 1);
~s1.set(\gate, 0); 
~s1.free;



\shortSawPattern

• See .scd file for this lecture for the code
• Important notes

• The class Impulse creates a sample of amplitude one followed by samples of 
zero at a regular frequency.  Here we use this to trigger the gate of an EnvGen
at a regular rate.

• The class Select is a way of choosing between several options on the server.  
It is the closest we can get conditional structure on the server side.  Here the 
Select chooses from randomly generated integers from the TIRand class 
several possible frequencies to pass to the Saw oscillator.

• Given some initial frequency which we can consider the tonic, the four 
possible frequencies are scale degrees !1, ♭!3, !5, and ♭!6.  These are 
randomized by octave.



ADSR

Attack

Decay
Sustain

Release

• One of the most common envelope generators is ADSR: Attack, Decay, Sustain, 
Release

• Concept developed by Vladimir Ussachevsky at Princeton in 1965 while working 
on the Moog synthesizer.

• Universal on pretty much all digital/analog synthesizers



ADSR Triggering

• The class method Env.adsr produces an ADSR envelop.  Note though 
that it is not a fixed time for sustain.
• To trigger the release of an ADSR, zero must be passed to the gate 

parameter otherwise the Synth will persist at the sustain portion of 
the envelope.
• This is incredibly useful for input devices like keyboards, for example, 

where the down stroke of the key can be mapped to a gate of 1 and 
the release can be mapped to 0.  We will see more examples of this 
when we discuss MIDI.



ADSR Example
(
SynthDef(\tri, {

arg freq = 440, aTime = 0.1, dTime = 2.5, rTime = 1.5, peakAmp = 0.4, sAmp = 0.3, gate = 1;
var sig, env;
sig = LFTri.ar(freq);
env = Env.adsr(aTime, dTime, sAmp, rTime, peakAmp);
Out.ar(0, sig * EnvGen.kr(env, gate, doneAction: Done.freeSelf) ! 2);

}).add;
);

a = Synth(\tri, [\freq, 150]);
a.set(\gate, 0);

• Instantiating the Synth will trigger the envelope because the default value for the gate is 
set to 1.  This will play the attack and decay and hold on the sustain.  Note there is no
sustain time provided.  It plays as long as the gate is open.

• To release the note we must send the Synth a message to set the gate to 0.
• Note that we cannot reuse this Synth because we set the doneAction to free the Synth 

upon completion of the envelope.


