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• Inner Product with Sine and Cosine
• Discrete Signals
• Discrete Fourier Transform



What is the Frequency Domain?

So far we have consider how signals change through time.  We call this 
the time domain.  All of our analyses focus on the change in amplitude 
over time.



What is the Frequency Domain?

• The frequency domain is the analysis of signals with respect to their 
constituent frequencies instead of time.

• A signal can be converted to and from the frequency domain using a 
transform function.
• There are several flavors of transform functions all of which are named after 

Joseph Fourier.
• Remember Fourier stated that any1 signal can be converted to a sum of sine 

and cosine waves.

1There are some exceptions.  See readings.
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Terminology
• Fourier Series: Expresses a continuous, periodic signal as a summation of 

weighted harmonics (i.e., sine and cosine waves) from a harmonic series.
• Fourier Transform: Expresses any continuous signal as a summation of 

weighted sinusoids.
• Discrete Fourier Transform: Expresses a discrete signal (assumed to be 

periodic) as a summation of weighted harmonics from a harmonic series.
• Fourier Analysis: The process of deconstructing a signal into its constituent 

sine and cosine waves.
• Fourier Synthesis: The process of reconstructing a signal from its 

constituent sine and cosine waves.
Sadly, we don’t have time to examine the math behind the Fourier Series or Fourier transform 
but see the Supplemental readings for a more complete understanding.



Intuition

• We have already been introduced to the notion that complex signals 
can be created from the basic building blocks of sine and cosine 
waves: square waves, sawtooth waves, triangle waves, etc.
• A common analogy for Fourier analysis and synthesis is cooking.  
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Visualization of a Square Wave



Types of Fourier Transforms

• Remember our signals are not continuous!  They are a construction of 
samples that are played back at a sample rate and processed through a 
DAC to render our audio signal.
• If we want to perform a Fourier analysis on an arbitrary musical signal, 

then we will need to use a Fourier transform that is appropriate for 
discrete values.  
• Answer: Discrete Fourier Transform!  Also known as DFT.

• It turns out that much of the math for signal analysis is computationally 
intensive.  In 1965 by James Cooley and John Tukey developed what is now 
known as the Fast Fourier Transform which greatly increased the speed of 
calculations using a divide-and-conquer algorithm that recursively broke 
down the computations of DFT.
• DFT algorithms -> Ο 𝑁!

• FFT algorithms -> Ο(𝑁 log𝑁)



FreqScope

The class FreqScope
that you have been 
using throughout the 
semester performs a 
visualization of a 
Fourier Analysis on 
the outputted audio 
signal.



GOAL: Derive Intuition Behind How DFT 
Works
• We are going to start out our discussion of frequency domain by first 

considering how we can get a signal from the time domain to the 
frequency domain.
• GOAL: develop intuition about how one would do that.
• Proofs and formalities will be left to class notes.
• DFT requires a lot of math and is complicated.  We will not be too 

concerned with the details.  Just get a good overview of how the 
system works.



Let’s assume we are dealing with periodic 
signals…



Important Idea #1: Sinusoids are Orthogonal

• What is orthogonality?  
• Geometrically, two vectors that are perpendicular
• Mathematically, dot product = 0

• What is a dot product?
• Suppose I have two sampled signals 𝑥 = [𝑥% , 𝑥# , 𝑥& , … ] and 𝑦 = [𝑦% , 𝑦# , 𝑦& , … ] then the dot 

product of those signals is equal to 𝑥%𝑦% + 𝑥#𝑦# + 𝑥&𝑦& +… etc.
• For example, if 𝑥 = 0, 0.1, 0.15, −0.1 and 𝑦 = [−1, −0.9, −0.4, 0], the dot product of 𝑥 and 
𝑦 (sometimes written 𝑥, 𝑦 ) is 0 ∗ −1 + 0.1 ∗ −0.9 + 0.15 ∗ −0.4 + −0.1 ∗ 0 = −0.15

• What about dot product for functions/signals that are not discrete?
• Technically, this is called the inner product.  Dot product is for vectors of finite dimensions.

• If 𝑓(𝑥) and 𝑔(𝑥) are functions, then 𝑓, 𝑔 = ∫'
( 𝑓 𝑥 𝑔 𝑥 𝑑𝑥.  This is a mathematical way of 

saying to take the multiplicative sum of every infinitesimal point along these two functions.
• Interested in when 𝑓, 𝑔 = 0



Important Idea #1: Sinusoids are Orthogonal

• CLAIM: any two sinusoids that are periodic on an interval from 0 to 𝐿
seconds have an inner product of zero UNLESS they have the same 
frequency (with one exception).
• Wait what…?

Inner Product of Zero!



Important Idea #1: Sinusoids are Orthogonal

All of these waves are periodic along the 
interval 0 to 𝐿 with different amplitudes 
or phases and different frequencies.  All 
have an inner product of zero.



Important Idea #1: Sinusoids are Orthogonal

All of these waves are periodic along the 
interval 0 to 𝐿 with different amplitudes 
or phases but the same frequencies.  All 
have an inner product that is non-zero.



Important Idea #1: Sinusoids are Orthogonal
ONE EXCEPTION: two sinusoids of the same frequency but 𝜋/2 out of 
phase will also have inner product of 0.  For example, the inner product 
of a sine wave with a cosine wave is always 0 whether they have the 
same frequency or not.

0!  Because 
out of 
phase by )

&
.



Important Idea #1: Sinusoids are Orthogonal
• How can I prove this?

• This lecture has lecture notes made by me!  I have proven everything that we 
have stated here.  Note that you need to have a good grasp on integrals and 
calculus.

• But also… you do not need to know the proofs.

• So you have proven it to me, but I still don’t believe you.
• I wrote a python program that calculates the inner product of two periodic 

sampled waveforms.  Try it out and verify!

• Sampling from the waveforms I described earlier will also lead to 
similar results.



Exercises: Orthogonality
State whether the value of the inner product of 𝑓 and 𝑔 is zero or non-zero.  Note 
that the inner product is distributive.

𝒇 𝒈 Zero or non-zero?

2sin(200𝜋𝑡 + 0.1) sin(200𝜋𝑡)

sin(200𝜋𝑡) sin(400𝜋𝑡)

sin(200𝜋𝑡 +
𝜋
2)

sin(200𝜋𝑡)

sin(200𝜋𝑡) cos(200𝜋𝑡)

sin(200𝜋𝑡) sin 100𝜋𝑡 + sin(300𝜋𝑡)

sin(400𝜋𝑡) 1
!"#

$
1
𝑛
sin(2𝜋 100 𝑛𝑡)



Important Idea #2: Periodic signals are made 
of JUST harmonics
• Joseph Fourier stated that any periodic signal could be reduced to a 

sum of sine and cosine waves. 
• Even crazier, he said that those sine and cosine waves would be 

integer harmonics of some fundamental.  The harmonic series!
• The amplitude/phase of those harmonics determines the type of periodic 

signal.

• Fourier series for a continuous, periodic signal 𝑓(𝑡) over a period of 𝐿
seconds:

𝑓 𝑡 = 𝑎@ + '
ABC

D

𝐴A cos(2𝜋
𝑛
𝐿
𝑡 + 𝜙A)

!
*

is the frequency of each 

harmonic.  #
*

is the frequency of 
the fundamental of the 
harmonic series.



Important Idea #2: Periodic signals are made 
of JUST harmonics

OFFSET …

Fundamental 

1st Harmonic 2nd Harmonic

• Here we are taking the weighted sum of every frequency that could be be 
periodic along the interval 0 to 𝐿.  These will be frequencies that are integer 
multiples of the interval 𝐿.  Note that these harmonics could have ANY 
phase or amplitude.

• Important to remember: some of the harmonics (including the 
fundamental!) may not be present in the signal itself.  Think triangle wave or 
square wave which only has odd harmonics.  



Exercises: Possible Frequencies

• Suppose a periodic signal has a period of 0.5 seconds.  What are the 
possible frequencies/partials that could constitute that signal?

• Could a frequency of 3Hz be a part of the signal?



• How does this help us?
• Remember Fourier stated that any (well-behaved) periodic function 

can be represented as a sum of sinusoids.

Drawing Some Conclusions…

Your arbitrary periodic signal 
as a black box

What’s inside?

𝐴%
𝐴#cos 𝑤#𝑡 + 𝜙# +
𝐴&cos 𝑤&𝑡 + 𝜙& +
𝐴'cos 𝑤'𝑡 + 𝜙' +

…



• IDEA: To figure out if a frequency 𝑓 is part of an arbitrary periodic, 
signal 𝑥, take the inner product of the signal 𝑥 with a sinusoid of 
frequency 𝑓.
• IF 𝑓 IS a frequency in 𝑥, then the inner product will be non-zero
• IF 𝑓 IS NOT a frequency in 𝑥, then the inner product will be zero

• If we know the period of the signal (easy to figure out), then we only 
need to test harmonics!

Drawing Some Conclusions…



Example: 𝑥 𝑡 = 0.25 sin(2𝜋 3 𝑡 + !
"
) + 0.1 sin(2𝜋 4 𝑡 + !

#
)

• Suppose 𝐿 = 1 (an interval of one second) for simplicity’s sake and  
𝑥 𝑡 = 0.25 sin(2𝜋 3 𝑡 + 7

8
) + 0.1 sin(2𝜋 4 𝑡 + 7

9
) .

• Note that both sinusoids are periodic on the interval 𝐿 = 1
• If any periodic signal is composed of harmonic partials (that’s what 

the Fourier series tells us), then what are the possible frequencies 
that could be partials in an arbitrary periodic signal with 𝐿 = 1?

1, 2, 3, 4, 5, … etc.  Remember that 𝑓 = ⁄𝑛 𝐿 in 
Fourier’s Series.  Since 𝐿 = 1 and 𝑛 must be positive 
integers, then we have the set of positive integers as the 
possible frequencies.



• How can we test if frequency 1Hz is a part of our signal 𝑥(𝑡), still 
assuming periodicity on the interval of 0 to 𝐿 = 1?  Answer: Take the 
inner product of 𝑥(𝑡) with a sinusoid of frequency 1Hz.
• Say 𝑔 𝑡 = sin(2𝜋(1)𝑡).  What is 𝑥, 𝑔 ? 

• Well… it turns out the inner product is distributive!  If 𝑎 𝑡 =
0.25 sin(2𝜋 3 𝑡 + E

F
) and 𝑏 𝑡 = 0.1 sin(2𝜋 4 𝑡 + E

G
), then 𝑥, 𝑔 = 

𝑎, 𝑔 + 𝑏, 𝑔 .
• So what is 𝑎, 𝑔 + 𝑏, 𝑔 ?

0!  Because 1Hz is a different frequency then 3Hz and 4Hz.  
Remember sinusoids of different frequencies are orthogonal! 

Example: 𝑥 𝑡 = 0.25 sin(2𝜋 3 𝑡 + !
"
) + 0.1 sin(2𝜋 4 𝑡 + !

#
)



• So we take the inner product with 𝑥 and sinusoids of frequencies 1Hz 
and 2Hz and get back inner products of zero both times.  Why?  
Orthogonality of sinusoids.
• What will happen though for 𝑥, sin(2𝜋(3)𝑡) ?  

Example: 𝑥 𝑡 = 0.25 sin(2𝜋 3 𝑡 + !
"
) + 0.1 sin(2𝜋 4 𝑡 + !

#
)

We will get back a nonzero result!  What does this 
signify?  That the frequency 3Hz is a part of 𝑥(𝑡).  
We have sleuthed out one of the partials of our 
signal.  We will learn shortly what exactly that 
non-zero value can do for us, but for now it simply 
means we have found a frequency in our signal.



• Now we decide to take the inner product of 𝑥 with sin 2𝜋(4)𝑡 .  
What value do we get?

Example: 𝑥 𝑡 = 0.25 sin(2𝜋 3 𝑡 + !
"
) + 0.1 sin(2𝜋 4 𝑡 + !

#
)

BE CAREFUL!  This will lead to a value of zero.  Why 
is that?  Remember inner product of two sinusoids 
that are periodic on the interval 𝐿 is non-zero 
when the frequencies are the same and they are 
NOT out of phase by ⁄𝜋 2.   



How can I check if a frequency 𝑓:;<: is a part of an arbitrary periodic 
signal 𝑥(𝑡)? 

• First make sure 𝑓HIJH = ⁄𝑛 𝐿 where 𝑛 is a positive integer; if it is not, then it is 
not part of the signal.  If it is, we still need to test.

• To test, take the inner product of a sinusoid of frequency 𝑓HIJH with the signal!
• If your result is zero, then that frequency is not contained.  Why?  The inner 

product of sin 2𝜋𝑓HIJH𝑡 with each component of 𝑥 𝑡 must have produced 
zero. Remember that any periodic signal can be constructed in the form 
𝐴Ccos 2𝜋𝑓C𝑡 + 𝜙C + 𝐴Gcos 2𝜋𝑓G𝑡 + 𝜙G + 𝐴Fcos 2𝜋𝑓F𝑡 + 𝜙F + etc.  
CAVEAT: possible to miss 𝑓HIJH if E

G
out of phase.  We will handle this shortly!

• If your result is non-zero, then your frequency is part of 𝑥 𝑡 . 

To Summarize…



What about that pesky ⁄𝜋 2 business?

• We saw that taking the inner product of 𝑥(𝑡) with a 
sinusoid of given frequency 𝑓!"#! does NOT definitively tell 
us whether 𝑓!"#! is a partial of 𝑥(𝑡).  This is concerning…
• How can we fix this problem?

• Answer: take the inner product with a sine wave of frequency 
𝑓"#$" and cosine wave of frequency 𝑓"#$".  Can not be ⁄𝜋 2 out of 
phase with both!

• Example: we saw when 𝑥 𝑡 = 0.25 sin(2𝜋 3 𝑡 + %
&
) +

0.1 sin(2𝜋 4 𝑡 + %
!) and 𝑔 𝑡 = sin(2𝜋(4)𝑡) that 𝑥, 𝑔 = 0.

• Now say ℎ 𝑡 = cos(2𝜋(4)𝑡) then 𝑥, ℎ will be non-zero!
• So it may be a little less efficient to take the inner product of 
𝑥(𝑡) for both sine and cosine but it guarantees we will not run 
into the pesky ⁄𝜋 2 issue. 



Important Idea #3: Take Inner Product with 
Sine and Cosine
• What does the result of the signal’s inner product with a sine or cosine 

wave signify when the result is non-zero?
• Suppose an arbitrary periodic signal 𝑥 𝑡 has partial 𝐴 cos(2𝜋𝑓𝑡 + 𝜙).

• Then 𝑥, cos(2𝜋𝑓𝑡) = '(
!
cos(𝜙)

• Then 𝑥,−sin(2𝜋𝑓𝑡) = '(
!
sin(𝜙)1

• 𝐿 here is the period on which 𝑥 𝑡 is periodic.
• Using these two values, we can determine the amplitude AND phase of the 

partial.
• Say 𝑎 = '(

!
cos(𝜙) and 𝑏 = '(

!
sin(𝜙),

• Then 𝐴 = !
(
𝑎! + 𝑏! and 𝜙 = tan)*(+

,
)

1The choice of taking the inner product with − sin(2𝜋𝑓𝑡) might seem strange.  Why not sin(2𝜋𝑓𝑡)?  Well it turns out that both are ⁄𝜋 2 away 
from cos(2𝜋𝑓𝑡), so either would work and solve our issue.  Here we choose − sin(2𝜋𝑓𝑡) because the Discrete Fourier Transform uses 
− sin 2𝜋𝑓𝑡 .



Example

Suppose some periodic signal 𝑥(𝑡) on the interval 0 to 𝐿 = 1 has 
frequency 𝑓:;<: as one of its partials.  We find out that 
𝑥, cos(2𝜋𝑓:;<:𝑡) = 0.25 and 𝑥, −sin(2𝜋𝑓:;<:𝑡) = 0.  What is the 

amplitude and phase of the partial?

Amplitude = @
A
(0.25)@+ 0@ = 0.5

Phase = tanBA( C
C.@D

) = 0

Partial = 0.5 cos(2𝜋𝑓EFGE𝑡)



• Taking the inner product with both sine and cosine allows us to reconstruct 
the original partial based on the two scalar results returned by the inner 
products!
• You will notice that we have to perform two separate inner products for 

each frequency we are testing.  We can actually express this same idea 
with one inner product if we use a complex number or vector.  
• Suppose we have a function 𝑐 𝑡 = cos(2𝜋𝑓"#$"𝑡) − sin 2𝜋𝑓"#$"𝑡 𝑖.  Then for some 

periodic signal 𝑥(𝑡) on the period 0 to 𝐿, 𝑥, 𝑐 = '(
!
cos(𝜙) + '(

!
sin(𝜙) 𝑖

• Using complex numbers yields a single value that contains our two inner products.  
There is nothing “complex” about our result.  There are no imaginary numbers, per 
se, in play here.  No part of our signal contains a square root of a negative number.  
The advantage is that because you cannot combine the real and complex parts of a 
complex number, we can keep our two inner products in separate parts of one self-
contained value.  That is why we use them!

Important Idea #3: Take Inner Product with 
Sine and Cosine



Important Idea #3: Take Inner Product with 
Sine and Cosine

𝑥, cos(2𝜋𝑓𝑡) 𝑥, − sin(2𝜋𝑓𝑡)

𝐴𝐿
2
cos(𝜙)

𝐴𝐿
2
sin(𝜙)

𝑥, cos 2𝜋𝑓𝑡 − sin(2𝜋𝑓𝑡) 𝑖

𝐴𝐿
2
cos(𝜙) +

𝐴𝐿
2
sin(𝜙) 𝑖



• Euler’s formula: 𝑒=> = cos 𝑥 + 𝑖 sin 𝑥 or 
𝑒?=> = cos 𝑥 − 𝑖 sin 𝑥 .
• So we can also perform inner product with 
𝑒?97@-./-:= = cos 2𝜋𝑓:;<:𝑡 − 𝑖 sin(2𝜋𝑓:;<:𝑡)
• Another way to express the same thing, but 

now as an exponential.
• Exponential form is elegant because we can 

encapsulate two sinusoids into a single term.
• Exponentials are generally easier to manipulate 

and calculate.  Analyses of filters and other DSP 
properties are done with complex exponentials 
for this reason

Important Idea #3: Take Inner Product with 
Sine and Cosine



Important Idea #3: Take Inner Product with 
Sine and Cosine

𝑥, cos(2𝜋𝑓𝑡) 𝑥, − sin(2𝜋𝑓𝑡)

𝐴𝐿
2 cos(𝜙)

𝐴𝐿
2 sin(𝜙)

𝑥, cos 2𝜋𝑓𝑡 − sin(2𝜋𝑓𝑡) 𝑖

𝐴𝐿
2 cos(𝜙) +

𝐴𝐿
2 sin(𝜙) 𝑖

𝑥, 𝑒)&*+,-

𝐴𝐿
2 cos(𝜙) +

𝐴𝐿
2 sin(𝜙) 𝑖



Important Idea #4: Discretization

• Everything that we have discussed so far has dealt with continuous 
signals.  If we want to process signals in our computer, we have to 
understand that those signals are discrete, sampled representations 
of continuous signals.
• What does the inner product look like in the discrete world?  In the 

continuous world, the inner product is calculated through integrals 
and calculus.  In the discrete world, the calculations are much simpler.  
• If we take the inner product of two discrete signals 𝑓 and 𝑔, then we simply 

sum the product of each sample from 𝑓 and 𝑔.

• This of course will be an approximation but all key ideas still apply.



Calculating Inner Product of Sampled Signals

• Consider two sampled signals 
𝑥[𝑛] and 𝑦[𝑛] where 𝑛 is 𝑛th
sample of a signal of 𝑁 total 
samples.

• The inner product of 𝑥[𝑛] and 
𝑦[𝑛] is equivalent to 
∑HIJK?L 𝑥 𝑛 𝑦[𝑛].

• The inner product of the two 
signals on the right will be 
approximately zero.



The Discrete Fourier Transform

• 𝑋+ is a “frequency bin”.  It is a complex number whose real and imaginary part contain the information to 
determine the phase and amplitude of the “frequency” 𝑘.

• 𝑥 is the sampled signal as an array of amplitudes. 𝑛 is the index into the array of samples.  𝑥! is the 𝑛th
sample from the array of amplitudes 𝑥.

• 𝑘 is related to the frequency. 𝑘 is an integer number of complete cycles of a sinusoid over the period 𝐿
seconds of which we have 𝑁 samples.  Before we were using the variable 𝑛 to represent this property.  We 
are switching it to 𝑘, so that we can use 𝑛 to represent the 𝑛th sample.  Remember samples by themselves 
do not imply any time period.  To derive the frequency we are testing, we can say 𝑓 = ⁄𝑘 𝐿 = ⁄𝑘 𝑁 ∗ 𝑓,
where 𝑓, is the sample rate.  See class notes for derivation.

• 𝑁 is the number of samples of the signal 𝑥!

𝑋+ = !
!"%

- .#

𝑥[𝑛]𝑒./&)+!/-

OR

𝑋+ = !
!"%

- .#

𝑥[𝑛] cos 2𝜋𝑘
𝑛
𝑁

− 𝑖 sin 2𝜋𝑘
𝑛
𝑁

This is just an inner 
product over 𝑁 samples.  
Exact same idea!



Example
• Suppose we want to test whether the discrete periodic signal 𝑥 has the frequency 

component 𝑓HIJH = 3𝐻𝑧.  Let us say that 𝑥 is periodic on the interval 𝐿 = 1
second and that 𝑥 has 𝑁 = 8 samples at a sample rate of 𝑓J = 8𝐻𝑧. 

• 𝑥 = [0.08660254, 0.68122488, 0.95, 0.80369936, −0.08660254,
−0.68122488, −0.95, −0.80369936].  

• We also know then that 𝑘 = 𝑓𝐿 = 3 1 = 3 for the DFT.
• What are the valid frequencies that could be a part of 𝑥?  

1𝐻𝑧, 2𝐻𝑧, 3𝐻𝑧. Fourier Series tells us that 𝑥 has harmonics that are 
periodic to 𝐿 = 1.  Therefore, 𝑥 could have 1𝐻𝑧, 2𝐻𝑧, 3𝐻𝑧, 4𝐻𝑧, … 𝑒𝑡𝑐.
Presumably though our sampled signal 𝑥 was passed through a low pass 
filter to remove any frequencies that could be aliased in our ADC.  If we 
have a sampling rate of 8Hz, then our Nyquist frequency is 4Hz.  Thus, we 
hope our sampled signal 𝑥 only has frequency components < 4Hz.  
Therefore 𝑥 should only contain some combination of 1𝐻𝑧, 2𝐻𝑧, 3𝐻𝑧.



Example
• Let us compute 𝑋M = ∑HIJK ?L 𝑥[𝑛] cos 2𝜋𝑘 H

K
− 𝑖 sin 2𝜋𝑘 H

K
=

∑HIJN 𝑥[𝑛] cos 2𝜋(3) H
O

− 𝑖 sin 2𝜋(3) H
O

• Reminder: 𝑥 = [0.08660254, 0.68122488, 0.95, 0.80369936,
−0.08660254, −0.68122488, −0.95, −0.80369936].
• Thus, 𝑋8 = 0.08660254 ∗ cos 0 − 𝑖 sin 0 + 0.68122488 ∗
cos 2𝜋(3) L

O
− 𝑖 sin 2𝜋(3) L

O
+ 0.95 ∗

cos 2𝜋(3) 9
O

− 𝑖 sin 2𝜋(3) 9
O

…𝑒𝑡𝑐 = 0.346410161 − 0.2𝑖

• 𝑋8 ≠ 0.  Therefore, 3Hz is a part of our signal!



Example
• Let us calculate the phase and amplitude of 3Hz sinusoid.

• We know 𝑥, cos(2𝜋𝑓𝑡) = ./
&
cos(𝜙) = 𝑎 and 𝑥, −sin(2𝜋𝑓𝑡) = ./

&
sin(𝜙) = 𝑏 for a 

continuous periodic signal.  And that 𝐴 = &
/
𝑎& + 𝑏& and 𝜙 = tan)#(0

1
).

• We can use variations of these continuous formulas for discrete signals to determine the 
amplitude and phase based on our result of 𝑋' = 0.346410161 − 0.2𝑖.  Reminder that this will 
be the phase for a cosine wave.

• 𝜙 = tan)#(0
1
) = tan)#( )%.&

%.'343#%#4#
) = −0.5235 ≈ − *

4
.  Same equation in discrete case.

• To get the right approximation in the discrete case, we actually need to calculate 𝐴 =
&
5

𝑎& + 𝑏&.  Therefore, 𝐴 = &
6
0.346410161& + 0.2& = 0.1.

• Therefore, we can conclude that 0.1 cos(2𝜋 3 𝑡 − *
4) is a part of our signal 𝑥!.  In fact, the 

samples come from the following signal cos 2𝜋 1 𝑡 − *
& + 0.1 cos(2𝜋 3 𝑡 − *

4).



Conclusions

• The Discrete Fourier Transform calculates the inner product of a 
sampled signal with a cosine and sine complex number of a given 
frequency.  
• The Discrete Fourier Transform will return a complex number whose real and 

imaginary parts can be used to reconstruct the phase and magnitude of the 
signal.  A non-zero complex number means the frequency is a part of sampled 
signal.

• 𝐴 = G
X

ℜ(𝑋Y)G + ℑ(𝑋Y)G

• 𝜙 = tanZC(ℑ(\/)
ℜ(\/)

)
• ℜ(𝑋Y)is the real part of the complex number and ℑ(𝑋Y)is the complex part 

of the number (i.e., 𝑎 + 𝑏𝑖)



Conclusions

• The Discrete Fourier Transform only returns a complex number for one
frequency component.
• To get the full picture, we need to perform the DFT for all possible 

frequencies in the periodic signal.  What are the possible frequencies?
• 𝑁 (i.e., the number of samples) coupled with the sampling rate determine the time 

period for the signal.  For example, 4 samples at a sampling rate of 8Hz indicates we 
have a sampled signal of 0.5 seconds.  We call this the fundamental period (i.e., the 
time it would take a sine wave to complete exactly one cycle).

• We need to test all frequencies that are integer multiples of fundamental period up 
to but excluding the Nyquist frequency.  Equivalent to harmonics of the Fourier 
Series.

• Time to perform this operation is 𝑂(𝑛!).  FFT does the exact same calculations but in 
𝑂 𝑛 log𝑛 time.



Conclusions

• The DFT assumes that the sampled 
signal is periodic.
• Interesting things start happening 

when we perform the DFT on non-
periodic signals.  Teaser: spectral 
leakage! 
• The reality of your signal is that it 

almost certainly will NOT be periodic.  
We can still use DFT!


