
MIDI

Topics Addressed

• MIDI
• Pitch
• Volume/Velocity
• Rhythm/Duration
• Running Status
• MIDI Format

• MIDI in SC (see lecture code)
• Connecting to MIDI
• Polyphonic synthesizers
• Monophonic synthesizers

Digital Representation

• We have seen how music is represented digitally via samples. In this
format, the raw audio is encoded in bits on a computer and stored in
memory.
• We can also capture musical information and store it digitally as well,

similar to a musical score.
• Here we are concerned with capturing the properties of music and not the actually

audio itself. We want the data on the notes, durations, articulations, timbre… etc.
• Any system that attempts to encode this information in a computer must first decide

what properties are important to the music being represented. This can vary
depending upon the musical style!

• Goal: come up with a way of encoding the important information in a
musical work (i.e., the digital equivalent to a paper score). We will confine
ourselves to Western musical style.
• We will examine the MIDI protocol to see how the most popular encoding represents

music.

MIDI

• MIDI (Musical Instrument Digital Interface) is the most common digital representational
system for music.

• It was a communication protocol designed to communicate between synthesizers and
other digital instruments in the early 1980s and is ubiquitous among digital software and
hardware.

• It helped standardized communication between different manufacturers and was
spearheaded by a collaboration between Japanese and American musical hardware
manufacturers

• First MIDI-based synthesizers were brought into commercial production in 1982.
• MIDI is a protocol.

• Protocol: a set of rules dictating how information will be communicated
• Examples: HTTP (HyperText Transfer Protocol), FTP (File Transfer Protocol), OSC (Open Sound

Communication)… etc.
• To understand MIDI, we need to have an understanding of bits, bytes, and hexadecimal

Quick Review

• Computer data is stored with bits (binary pieces of information).
• Physically, bits capture either high voltage or low voltage, represented

as 1 or 0, respectively.
• We saw that given four bits, each capable of representing exactly two states,

that we could derive 16 different combinations.
• If those four bits represent a number, then we can represent exactly 16

different numbers.
0

1

2

3

4

5
Etc…

6 = Low Voltage

= High Volage

• 8 bits together form a byte. 4 bits are referred to as a nibble (or nybble). Isn’t
that cute? Bytes are the main unit of storage in computers. A byte can represent
256 different combinations.

Counting in Binary
Base Ten
Number

Binary

0 0000 0000

1 0000 0001

2 0000 0010

3 0000 0011

4 0000 0100

5 0000 0101

6 0000 0110

7 0000 0111

128 1000 0000

255 1111 1111

…

…

1 0 1 1
8 4 2 1
23 22 21 20

3 2 1 0 position
weight

2 4 0
100 10 1
102 101 100

2 1 0

= 2 x 102 + 4 x 101 + 0 x 100

position
weight

Base 10

Base 2
(i.e., Binary)

Most Significant Bit Least Significant Bit

Hexadecimal
0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Hex Decim
al

Binary

Base Ten
Number

Binary Hexadecimal

0 0000 0000 0x00

1 0000 0001 0x01

2 0000 0010 0x02

3 0000 0011 0x03

4 0000 0100 0x04

5 0000 0101 0x05

6 0000 0110 0x06

7 0000 0111 0x07

128 1000 0000 0x80

255 1111 1111 0xFF

…

…

• Hexadecimal (also known as base
sixteen) is a common way to express
the bits in a byte.

• We need 16 characters to represent
all the possible combinations for a
given position in a hexadecimal
number which is why we have A, B,
C, D, E, and F

• A single hexadecimal digit
represents 16 possibilities. A byte
represents 256 different
permutations. So two hexadecimal
digits are needed (16 * 16 = 256).

• Use the chart on the left to relate
binary, decimal, and hexadecimal.

• Note that in CS, hexadecimal
numbers are indicated using the
prefix “0x”.

Exercise

• What number is 0xA4 in decimal and binary?

• What number is 94 in binary and hexadecimal?

• What number is 0110 1010 in decimal and hexadecimal?

Exercise

• Given 4 bits, what is the maximum number that can be represented?

• Given 7 bits, what is the maximum number that can be represented?

• Given n bits, what is the maximum number that can be represented in
terms of n?

Encoding Pitch

• How many bits does it take to encode all the notes in Western music’s
notational system?
• Well there are 12 pitches in one octave – A, A#/Bb, B, C, C#/Db, D, D#/Eb, … etc.

• We would need four bits for the pitch -> 24 = 16 and 23 = 8 -> so 4 bits total
• 4 bits will leave us with extra things we could represent. Efficient?

• But there are pitches in different octaves, so really there are more notes than just 12.
How many octaves? Conceivably infinitely! But let’s restrict it to human hearing.
Realistically about 9.
• How many notes then? 9 * 12 = 108.
• How many bits then? 108 < 27 and 108 > 26 so 7 bits

• But wait, is there a difference between Ab and G# or Db and C#?
• What about double flats or double sharps? Triple sharps (yes, I’ve seen them)?
• Conceivably you could have any number of enharmonic spellings that should be

differentiated.
• Quarter tones?

Encoding Pitch

• Concession: let’s not worry about differences between
enharmonically equivalent notes.
• A# = Bb = Cbb
• Limitation!

• It will take us at least 7 bits to encode the pitches.
• For reference, a standard piano has 88 keys.

Encoding Pitch in MIDI
• MIDI is capable of expressing 128 different pitches via

7 bits (27 = 128)
• These 128 pitches are numbered 0 – 127.
• Middle C is number 60, giving a relatively even count

above and below.
• Note: the naming convention of C4, for example,

means “C in the fourth octave”
• What is the bit representation of A#5, for example?

• A#5 corresponds to the number 82.
• 82 in binary is 2^6 + 2^4 + 2^1.
• Binary: 0101 0010
• Hexadecimal: 0x52

Encoding Volume

• Volume/loudness is difficult to quantify.
• Scores: ppp, pp, p, mp, mf, f, ff, fff
• Relative volume: decibels
• Amplitude of waves

• Human perception of loudness is roughly logarithmic.
• MIDI actually does not have a specific piece of data solely for volume.

Instead, each note is encoded with a pitch as described before and a
velocity (which is almost always mapped to volume).
• Why velocity? Velocity is the measure of the speed of a key on a keyboard as

it goes down. Louder notes are generated with more velocity.

Encoding Volume

• The chart on the right is a rough mapping of
velocity to dynamic.
• Each synthesizer will interpret velocity

differently and volume will not necessary be
standardized across MIDI devices.
• Velocity could potentially be mapped to other

parameters. MIDI specification does not
mandate that velocity be mapped to volume.
Could be used for attack time or other
possibilities.

Encoding Duration/Rhythm

• Could take a similar approach to pitch and use a sequence of bits to
represent all the possible combination of durations.
• Quarter note, eighth note, sixteenth notes, half notes, whole notes, triplets
• Ties add to complexity
• Another issue: human hearing is attuned to duration and rhythmic precision

and oftentimes slight variations in durations sound more ”natural”
• Also need to know when notes occur (i.e., note placement)

• Bits to represent position of notes
• Fixed Score/Real time

• Would be nice to have a real time encoding such that users could generate an
encoding of their music as they perform it

MIDI Duration/Rhythm

• MIDI combines note duration and placement by encoding the start of the
note and the end of the note
• The start of the note is called a “Note On” message
• The end of the note is called a “Note Off” message
• Implies duration

• How is note placement calculated? Conceivably there are infinitely many
places a note could begin/end in just a mere second.
• At the start of a midi file, there is an encoding that specifies “ticks per quarter note”

(a.k.a. “parts per quarter note” or “PPQ”). This represents the finest grain of
resolution. Anything that occurs between one of these ticks must be ”rounded”
(called quantization) to the nearest tick.

• PPQ can be as low as 24 (lowest acceptable resolution) or as high as 1000 or more

MIDI Duration/Rhythm Example

• MIDI uses note on and note off messages to delineate notes
• MIDI does not use the absolute location of notes to specify the timing of note on/note off

message. For example, MIDI will not encode the start of Note 3 at 72 ticks.
• MIDI uses a relative system for timing called “delta time”. For example, the start of Note 3 will be

encoded as the time between the start of Note 3 and the last message received before the start of
Note 3.

Note 1

Note 2

Note 3

0 ticks 96 ticks 192 ticks 288 ticks 384 ticks

PPQ = 96

MIDI Duration/Rhythm Example

Note 1

Note 2

Note 3

PPQ = 96
Message 1:
• Note On for Note 1
• Duration: 0 ticks

NOTE ON MESSAGE FOR NOTE 1

0 ticks 96 ticks 192 ticks 288 ticks 384 ticks

MIDI Duration/Rhythm Example

Note 1

Note 2

Note 3

PPQ = 96
Message 1:
• Note On for Note 1
• Duration: 0 ticks
Message 2:
• Note On for Note 2
• Duration: 96 ticks

NOTE ON MESSAGE FOR NOTE 2

96 ticks

0 ticks 96 ticks 192 ticks 288 ticks 384 ticks

MIDI Duration/Rhythm Example

Note 1

Note 2

Note 3

PPQ = 96
Message 1:
• Note On for Note 1
• Duration: 0 ticks
Message 2:
• Note On for Note 2
• Duration: 96 ticks
Message 3:
• Note Off for Note 1
• Duration: 144 ticks

NOTE OFF MESSAGE FOR NOTE 1

144 ticks

0 ticks 96 ticks 192 ticks 288 ticks 384 ticks

MIDI Duration/Rhythm Example

Note 1

Note 2

Note 3

PPQ = 96
Message 1:
• Note On for Note 1
• Duration: 0 ticks
Message 2:
• Note On for Note 2
• Duration: 96 ticks
Message 3:
• Note Off for Note 1
• Duration: 144 ticks
Message 4:
• Note Off for Note 2
• Duration: 0 ticks

NOTE OFF MESSAGE FOR NOTE 2

0 ticks

0 ticks 96 ticks 192 ticks 288 ticks 384 ticks

MIDI Duration/Rhythm Example

Note 1

Note 2

Note 3

PPQ = 96
Message 1:
• Note On for Note 1
• Duration: 0 ticks
Message 2:
• Note On for Note 2
• Duration: 96 ticks
Message 3:
• Note Off for Note 1
• Duration: 144 ticks
Message 4:
• Note Off for Note 2
• Duration: 0 ticks
Message 5:
• Note On for Note 1
• Duration: 48 ticks

NOTE ON MESSAGE FOR NOTE 3

48 ticks

0 ticks 96 ticks 192 ticks 288 ticks 384 ticks

MIDI Duration/Rhythm Example

Note 1

Note 2

Note 3

PPQ = 96
Message 1:
• Note On for Note 1
• Duration: 0 ticks
Message 2:
• Note On for Note 2
• Duration: 96 ticks
Message 3:
• Note Off for Note 1
• Duration: 144 ticks
Message 4:
• Note Off for Note 2
• Duration: 0 ticks
Message 5:
• Note On for Note 3
• Duration: 48 ticks
Message 6:
• Note Off for Note 3
• Duration: 96 ticks

NOTE OFF MESSAGE FOR NOTE 3

96 ticks

0 ticks 96 ticks 192 ticks 288 ticks 384 ticks

MIDI Exercise

• What does the musical score look like for the following encoding?

PPQ = 100

Message 1:
• Note On for Pitch 72 and Velocity 127
• Duration: 0 ticks
Message 2:
• Note Off for Pitch 72
• Duration: 100 ticks
Message 3:
• Note On for Pitch 74 and Velocity 127
• Duration: 0 ticks

Message 4:
• Note Off for Pitch 74
• Duration: 100 ticks
Message 5:
• Note On for Pitch 76 and Velocity 127
• Duration: 0 ticks
Message 6:
• Note Off for Pitch 76
• Duration: 200 ticks

Encoding Rhythm to Bytes

• Given a series of Note On/Note Off messages, MIDI uses some clever
bit manipulation to encode these messages to bytes.
• Problem: any MIDI file (or for that matter, any file in general) is simply

a sequence of bytes.

• How do we know which bytes/bits are pitch, volume, number of
ticks… etc?

00 AF 24 32 82 00 01 43 D3 E2
03 04 05 89 …

Variable Length Values

• In a stream of MIDI data, the first byte will always be related to the timing of the
first message
• There are actually bytes that precede the first timing byte concerning metadata about the

piece but in terms of the data describing the notes, the first value will be a VLV.

• The time values of messages are stored in a system called Variable Length Values.
• Each byte (yes, the time value can sometimes require more than one byte) for the time value

of the message is subdivided into the most significant bit and the remaining seven bits.
• If the MSB = 0, then the entirety of the time value is contained in the other seven bits. Remember 7 bits

can denote a maximum value of 127 and a minimum value of 0. Any tick value > 127 will require at least
one more byte.

• If the MSB = 1, then the time value is contained in every subsequent byte up to and including the next
byte whose MSB = 0. The bits for the time value are the amalgamation of the 7 bits from each of these
bytes.

• MIDI specification caps the number of VLV bytes at 5. In theory though, you
could have any number of VLV bytes.

Variable Length Value Example

1000 0001 0010 0000 Hex equivalent: 81 20

1000 0001 0010 0000

Indicates that the next byte
will be part of time value

The last byte of the time
value

00000010100000 Actual time value

00 0000 1010 0000 Formatted nicer

Time Value: 160

Status Bytes

• Following the VLV bytes, there will be a status byte (sometimes called
command byte) like Note On or Note Off
• Status bytes are distinguished by a 1 in the MSB.

• How do we know a status byte is not a part of a VLV time value?
• Answer: the last VLV byte has a MSB = 0, meaning that the subsequent byte will not be a part

of the time value.
• Many different types of status messages: note off, note on, aftertouch, control

change, patch change, channel pressure, pitch bend, system message
• Each type of status message has a fixed number of bytes that will follow comprising

the data for the status message.
• For example, all note off and note on messages are followed by exactly 2 bytes

• Data bytes follow a status byte.
• All data bytes have a 0 in the MSB and the remaining 7 bits contain the data

status Bytes

• The upper four bits of a status byte specify the type of status message.
• For example, 1000xxxx is always a note off message where “x” represents any

possible combination of 0 or 1
• 1001xxxx is always a note on message

• The lower four bits of a status byte represent the channel the message
should be sent on.
• MIDI allows for 16 channels of communication to different instruments. For

example, one could program Channel 1 to be a flute and Channel 2 to be a violin.
Note On/Note Off messages for the flute would be sent to Channel 1 and similarly
for the violin. Channels allow for polyphony of different instruments.

• Program/Patch change status bytes are used to set each channel to a specific
instrument.

• See https://www.midi.org/specifications-old/item/table-1-summary-of-
midi-message for the types of MIDI status bytes.

https://www.midi.org/specifications-old/item/table-1-summary-of-midi-message

Table of Status Bytes

Channel number (0 – 15)

Message Status Byte 2nd Byte 3rd Byte

Note Off 1000 xxxx Note Number Velocity

Note On 1001 xxxx Note Number Velocity

Polyphonic
Aftertouch

1010 xxxx Note Number Aftertouch
Pressure

Control Change 1100 xxxx Control Number Value

Program Change 1100 xxxx Program Number -

Channel Aftertouch 1101 xxxx Aftertouch
Pressure

-

Pitch Wheel 1110 xxxx Pitch Wheel LSB Pitch Wheel MSB

• Polyphonic Aftertouch:
measurement of the
pressure exerted on
individual notes for a
keyboard. Can be
mapped to vibrato,
volume, etc...

• Channel Aftertouch:
measurement of the
pressure exerted on all
keys. Produces less data
than polyphonic
aftertouch but less
flexible.

• Control Change:
Changes aspects like
main volume

Note On Example
Start of MIDI data (in hex): 08 90 3C 64

VLV time byte Status Byte Note Number Velocity

• MSB = 0 so only one byte
for the time value

• Assuming, let’s say, a
PPQ of 32 ticks, then
0x08 is 8 in decimal,
meaning to wait a
sixteenth note to execute
the note on message

• A message beginning 0x9
or 1001 in binary is a
note on status byte.

• The last four bits of all
zeroes indicate that the
channel for the note on
message should be 0.

• All note on messages are
followed by two data
bytes: pitch and velocity

• 0x3C is equivalent to 60
in decimal. 60 maps to
the note C4 (i.e., middle
C)

• 0x64 is equivalent to 100
in decimal

• This note should be
played loudly.

Running Status

• Question: why must all data bytes begin with zero? Wasting a bit halves
the available possibilities for delineating velocity, pitch, etc…
• Answer: Running Status!

• The MIDI Specification allows for MIDI messages to be sent without the
command/status byte provided that the message has the same status byte. This is
called running status.

• Imagine a series of consecutive note-on messages on the same channel. Each note-
on message requires three bytes: the status byte, the note number, and the velocity.
With running status, the first note-on message will require all three bytes, but
subsequent note-on messages will only need the note number and velocity. Saves
bytes! Efficient!

• In order for running status to work, all data bytes have a zero in the most
significant bit to avoid confusion with status bytes which all have a one in
the most significant bit.

Zero Velocity Note-on Vs. Note-off

• Many MIDI files actually eschew using note-off messages to turn off notes.
Instead, note-on messages with zero velocity are used instead.
• Why?
• One advantage is that using note-on messages of velocity zero works well with

running status. A sequence of note-on and note-off messages would require a new
status byte for each switch between note-on and note-off. Using only note-on
messages for both note-on and note-off messages requires exactly one status byte.

• Also why do note-off messages have a velocity? This velocity can be mapped to
different parameters such as aftertouch, release time, etc… How note-off velocity is
used is not standardized between different hardware/software. Often better to use
note-on with zero velocity for consistent results.

• MIDI parsers should respond to both note-off messages and note-on with
zero velocity.

Translate to Bytes

Note 1

Note 2

Note 3

PPQ = 96
Message 1:
• Note On for Note 1
• Duration: 0 ticks
Message 2:
• Note On for Note 2
• Duration: 96 ticks
Message 3:
• Note Off for Note 1
• Duration: 144 ticks
Message 4:
• Note Off for Note 2
• Duration: 0 ticks
Message 5:
• Note On for Note 3
• Duration: 48 ticks
Message 6:
• Note Off for Note 3
• Duration: 96 ticks

0 ticks 96 ticks 192 ticks 288 ticks 384 ticks

Bytes: ?

We will assume Note 1 is A4 at velocity 100, Note 2 is B4 is velocity 100, and Note 3 is
C5 at velocity at 100. All notes are on Channel 0.

Translate to Bytes
PPQ = 96

Message 1:
• Note On for Note 1
• Duration: 0 ticks
Message 2:
• Note On for Note 2
• Duration: 96 ticks
Message 3:
• Note Off for Note 1
• Duration: 144 ticks
Message 4:
• Note Off for Note 2
• Duration: 0 ticks
Message 5:
• Note On for Note 3
• Duration: 48 ticks
Message 6:
• Note Off for Note 3
• Duration: 96 ticks

Bytes: 00 90 45 64

Duration: 0 ticks

Status Message: Note On

Pitch: A4 (Note Num. = 69)

Volume: 100

0x00

0x90

0x45

0x64

Translate to Bytes
PPQ = 96

Message 1:
• Note On for Note 1
• Duration: 0 ticks
Message 2:
• Note On for Note 2
• Duration: 96 ticks
Message 3:
• Note Off for Note 1
• Duration: 144 ticks
Message 4:
• Note Off for Note 2
• Duration: 0 ticks
Message 5:
• Note On for Note 3
• Duration: 48 ticks
Message 6:
• Note Off for Note 3
• Duration: 96 ticks

Bytes: 00 90 45 64 60 47 64

Duration: 96 ticks

Status Message: Note On

Pitch: B4 (Note Num. = 71)

Volume: 100

0x60

0x90

0x47

0x64

Omit because of running status

Translate to Bytes
PPQ = 96

Message 1:
• Note On for Note 1
• Duration: 0 ticks
Message 2:
• Note On for Note 2
• Duration: 96 ticks
Message 3:
• Note Off for Note 1
• Duration: 144 ticks
Message 4:
• Note Off for Note 2
• Duration: 0 ticks
Message 5:
• Note On for Note 3
• Duration: 48 ticks
Message 6:
• Note Off for Note 3
• Duration: 96 ticks

Bytes: 00 90 45 64 60 47 64 81 10 45 00

Duration: 144 ticks (0x90)

Status Message: Note On

Pitch: A4 (Note Num. = 69)

Volume: 0

0x81 0x10

0x90

0x45

0x00

RS

Eschew Note Off Message

Translate to Bytes
PPQ = 96

Message 1:
• Note On for Note 1
• Duration: 0 ticks
Message 2:
• Note On for Note 2
• Duration: 96 ticks
Message 3:
• Note Off for Note 1
• Duration: 144 ticks
Message 4:
• Note Off for Note 2
• Duration: 0 ticks
Message 5:
• Note On for Note 3
• Duration: 48 ticks
Message 6:
• Note Off for Note 3
• Duration: 96 ticks

Bytes: 00 90 45 64 60 47 64 81 10 45 00
00 47 00

Duration: 0 ticks

Status Message: Note On

Pitch: B4 (Note Num. = 71)

Volume: 0

0x00

0x90

0x47

0x00

RS

Eschew Note Off Message

Translate to Bytes
PPQ = 96

Message 1:
• Note On for Note 1
• Duration: 0 ticks
Message 2:
• Note On for Note 2
• Duration: 96 ticks
Message 3:
• Note Off for Note 1
• Duration: 144 ticks
Message 4:
• Note Off for Note 2
• Duration: 0 ticks
Message 5:
• Note On for Note 3
• Duration: 48 ticks
Message 6:
• Note Off for Note 3
• Duration: 96 ticks

Bytes: 00 90 45 64 60 47 64 81 10 45 00
00 47 00 30 48 64

Duration: 48 ticks

Status Message: Note On

Pitch: C5 (Note Num. = 72)

Volume: 100

0x30

0x90

0x48

0x64

RS

Translate to Bytes
PPQ = 96

Message 1:
• Note On for Note 1
• Duration: 0 ticks
Message 2:
• Note On for Note 2
• Duration: 96 ticks
Message 3:
• Note Off for Note 1
• Duration: 144 ticks
Message 4:
• Note Off for Note 2
• Duration: 0 ticks
Message 5:
• Note On for Note 3
• Duration: 48 ticks
Message 6:
• Note Off for Note 3
• Duration: 96 ticks

Bytes: 00 90 45 64 60 47 64 81 10 45 00
00 47 00 30 48 64 60 48 00

Duration: 96 ticks

Status Message: Note On

Pitch: C5 (Note Num. = 72)

Volume: 0

0x60

0x90

0x48

0x00

RS

MIDI Format

• MIDI files come in two main formats (there are actually three but the
third never really caught on)
• Type 0 – All data is merged into one track
• Type 1 – Individual parts are saved on separate tracks . Tracks are intended to

be played simultaneously
• Type 2 – Tracks are independent sequences. Never caught on.

• All formats contain the same information but the organization is
different.

MIDI in SuperCollider

• See the lecture code for relevant details

