
Streams, Events, Patterns

Topics Addressed

• Streams
• Routines
• Music with Routines
• Patterns
• Events
• Pbind
• Musical Examples

Streams
• Every object in SuperCollider is a stream.

• A stream is a sequence of values that are obtained by successive calls to the
method .next.

• All streams respond to two methods: .next and .reset
• The .next method yields the next value in the sequence.
• The .reset method resets the sequence to its original starting value.

• Streams can be finite or infinite in length. When a finite stream
reaches the end of its values, it returns nil.

// some examples of streams
7.next; // yields the number seven
"hi".next; // yields the string "hi"
a = [1, 2, 3];
a.next; // yields the entire array, not individual elements
f = {10.rand};
f.next; // yields the function, not evaluation of the function

Routines

• Functions are seemingly ill-suited for musical events because the body of a function is
evaluated entirely upon the call to it. If a function, let’s say, described more than one
musical event, we would have no means for controlling when those events were suppose
to occur.

• Routines offer a means of starting and stopping functions, making them more suited for
controlling musical time/events.

• Routines are a special type of stream.
• Routines take a function as an argument and respond to several key methods within the

body of that function.
• With a call to .next on a routine, the function begins evaluation until it finds the method .yield

within the function. The function is then suspended and the object of the .yield method is
returned.

• With subsequent calls to .next on the routine, execution resumes where the function was last
suspended and then is suspended again upon encountering the next yield method. If the function
completes, then the routine is stopped and can be restarted from the beginning if the routine is
called with the .reset method.

Simple Routines
(
r = Routine({

3.do({arg i; i.yield});
});
)

r.next;
r.reset;

(
r = Routine({

1.yield;
2.yield;
3.yield;

});
)

r.next;
r.reset;

The yield method can go inside of
loops. The example above is identical to
the one on the left. The method reset
will start the routine over at the
beginning of the function.

1st call to next;
Returns 12nd call to next;
Returns 23rd call to next;
Returns 3> 4th call;
Returns nil

The yield method pauses execution of
the function passed to the routine and
returns the receiver of the yield
method (generally a number but could
be any object). Subsequent calls to
next resume execution until the next
yield/end of function.

Counter Example

Write a short routine that counts up from the number one by one for
each call to .next.

(
r = Routine({

var count = 0;
while({true}, {

count = count + 1;
count.yield;

});
});
)

Scheduling Routines

• Routines provides the tools for a lazy evaluation of a function that can
pause/start with the methods .yield, .next and .reset.
• The .next method controls the progression within the body of the

function. How can we control the timing of when the .next method
is called?
• Answer: clocks!

• SuperCollider provides several different clocks that can be used to schedule
different routines, streams, and other objects.
• The class SystemClock is the main clock that the computer runs at.
• The class TempoClock can be used to control musical events in terms of beats/tempo

• We will use SystemClock initially as the main way of controlling time.

System Clock

• The important class method for system clock is .sched
• 1st argument: an offset to when the object should be scheduled
• 2nd argument: an object

• The scheduling with the system clock works such that the .awake method
of the object in the 2nd argument will be called after the initial offset of
time in the 1st argument. For functions, the .awake method is equivalent
to .value, and for routines it is equivalent to .next.
• If the value returned by the .awake method on the object is a number, then the

object will be rescheduled for another call to .awake as an offset based on that
number.

• If the value returned by the .awake method on the object is nil, then the object will
not be rescheduled. Other non-numbers will also fail to reschedule the object.

Simple System Clock Examples

SystemClock.sched(2.0,{
"2.0 seconds later".postln;
nil;

});

SystemClock.sched(0.0, {
arg time;
time.postln;
1.0

});

The .awake method is called on the function
after two seconds. The function is not
rescheduled because nil was returned.

The .awake method is called on the function
after 0 seconds. When functions are the 2nd

argument, the time from the clock can be
passed as an argument. This function will be
rescheduled every one second.

Second Counter Example

Schedule a simple counter on the System Clock that counts up from
one by one every second

(
var count = 0;
SystemClock.sched(0, {

count = count + 1;
count.postln;
1

});
)

SystemClock.clear;

Using SystemClock.clear
will clear the System Clock
scheduler and stop the
counting.

Clocks and Routines

• The .awake method is equivalent to
the .next method for routines.

• In the top routine, “hi” gets printed
only once because the initially call to
.awake posts “hi” and then yields
0.5. The clock reschedules the
routine after 0.5 seconds and the
routine yields nil preventing the
routine from being rescheduled
again.

• In the bottom routine, the same
code is wrapped in a while loop that
never breaks. The routine
continually yields 0.5, causing it to be
constantly scheduled.

SystemClock.sched(0.0,
Routine({

// Only prints "hi" once
"hi".postln;
0.5.yield;

})
);

SystemClock.sched(0.0,
Routine({

while(true,
{"hi".postln; 0.5.yield}

);
})

);

Loop Method

SuperCollider offers a syntactic shortcut for the “while true” loop. The
class Function has an instance method .loop. You will see this
shortcut often in SC code with routines.

SystemClock.sched(0.0,
Routine({

while(
{true},
{"hi".postln; 0.5.yield}

);
})

);

SystemClock.sched(0.0,
Routine({

{"hi".postln; 0.5.yield}.loop;
})

);

SAME!

Tempo Clock

• The class TempoClock is very similar to SystemClock except that it
schedules based on beats per minute (i.e., tempo).
• SuperCollider has a default TempoClock set to 60bpm (beats per

minute) accessible with TempoClock.default.
• Note that the default TempoClock can be changed to an entirely new tempo

clock or its properties like bpm can be changed with any of the available
instance methods for TempoClock.

• We can also create our own Tempo Clocks.

Tempo Clock Examples

• We can schedule functions just liked we did with SystemClock except
here we will do it with beats.
• Two important methods:

• .schedAbs – Schedules at a specific beat after startup. Like beat 81, for example.
• .sched – Schedules at a delta beat away from the current clock time

(
var tempo = 120; // In bpm
t = TempoClock(tempo/60);
t.schedAbs(4, {

"This is beat 4!".postln;
nil

});
)

(
("Initial beat:" ++ t.beats).postln;
t.sched(4, {

("This is beat:" ++ t.beats).postln;
nil

})
)

.play method

The .play method for routines is a syntactic shortcut to eliminate the
need for explicitly using TempoClock.sched to schedule routines.

TempoClock.default.sched(0.0,
Routine({

{"hi".postln; 0.5.yield}.loop;
})

);

Routine({
{"hi".postln; 0.5.yield}.loop;

}).play;

SAME!

Note that you can use some other
clock other than the default
tempo clock as well by passing the
clock into the first argument of
.play.

Music with Routines

• Routines can be used to control many different kinds of musical
events.
• We will build a relatively simple example based on “Understanding

Streams, Patterns, and Events” from the help documents. We need
three key parts:
• A synth sound to be played back
• A routine to control what note to play back
• A routine to control the rate of notes (i.e., tempo/rhythm)

• Especially with the rate of notes, routines are an ideal choice for
controlling sound through time.

Music with Routines
(
SynthDef(\buzzSaw, {

arg out = 0, freq = 440;
var sig, env;
env = EnvGen.kr(Env.perc, levelScale: 0.3, doneAction: 2);
sig = RLPF.ar(

in: LFSaw.ar(freq, 0, env),
freq: LFNoise1.kr(1, 36, 110).midicps,
rq: 0.1

);
4.do({ sig = AllpassN.ar(sig, 0.05, [0.05.rand, 0.05.rand], 4) });
Out.ar(out, sig);

}).add;
)

• Creates a buzzy sawtooth sound with the default percussion envelope. The partials of the
sawtooth are fluctuated by resonant lowpass filter whose cutoff frequency moves up and
down in a linear fashion based on the output of LFNoise1.kr. The result is passed
through four stereo allpass filters in series to create a little reverberance.

• The class LFNoise1 creates linearly interpolated ramps between randomized values in the
range of -1 to 1. Compare {LFNoise0.ar(5000)}.plot and {LFNoise1.ar(5000)}.plot.

THE
SYNTH

Music with Routines
~noteRoutine = Routine({

{
// Low arpeggio
if(0.5.coin, {

24.yield;
31.yield;
36.yield;
43.yield;
48.yield;
55.yield;

});

// Varying arpeggio
rrand(2, 5).do({

60.yield;
#[63, 65].choose.yield;
67.yield;
#[70, 72, 74].choose.yield;

});

// Higher notes
rrand(3, 9).do({#[74, 75, 77, 79, 81].choose.yield});

}.loop;
});

• The routine here describes a randomized
choice of notes that are yielded with
subsequent calls to .next. The notes are
encoded as midi pitch numbers.

• The .coin method chooses true based
on a probability of choosing true (given by
the receiver)

• The notation #[] describes a literal array.
This is an array that cannot be changed
after it has been declared but is very
efficient.

• The method .choose when the receiver is
an array randomly chooses an element
from the array

• The method .rrand chooses an integer
between a low value and high value,
inclusive.

NOTE
ROUTINE

Music with Routines
(
Routine({

var dur = 1/8; // Play a note every eighth of a second
{

Synth(\buzzSaw, [\freq, ~noteRoutine.next.midicps]);
dur.yield;

}.loop;
}).play;
)

PLAYBACK
ROUTINE

• This routine governs the selection of the notes from the previous routine
and sets the rate of playback to an eighth of a second. Remember the play
method sets the routine to be rescheduled by the value yielded (which is
always 1/8 in this routine).

• Each scheduling of the routine generates exactly one synth which selects the
note to be played from the note routine (previous slide) and converts the
note from a MIDI pitch number to a frequency in hertz.

Patterns

• Patterns are closely related to streams in SuperCollider.
• Remember with streams, a stream is defined as any object in SuperCollider that has

a .next and .reset method. All objects in SuperCollider are streams.
• Patterns are defined as any object that has a .asStream method. You can think of

them as templates that can be converted into streams. All objects in SuperCollider
are patterns.

• The .asStream method converts a pattern into a stream. All patterns
are meant to be converted into streams and lazily evaluated through the
.next method.
• By default, most objects when used as the receiver to .asStream return

itself as a stream (remember all objects are patterns so this is acceptable).
There are objects, however, that have many more applications when used
with .asStream and are not trivial intellectual exercises. We will focus
on those.

Pattern Objects: Pseq

• SC has a number of great, non-trivial pattern objects that can be converted to
streams.

• The class Pseq – a sequential list of items. nil is provided when the list is
exhausted.
• 1st argument: a list
• 2nd argument: the number of repetitions. Provide inf for infinite repeats. Default is 1.
• 3rd argument: initial offset into the list. Default is 0.

(
// prints out 1, 2, 3, 4, nil
var pattern, stream;
pattern = Pseq.new(#[1, 2, 3, 4]);
stream = pattern.asStream;
5.do({stream.next.postln});
)

(
// prints out 2, 3, 4, 1, 2, 3, 4, 1, …
// (capped at 50 items)
var pattern, stream;
pattern = Pseq.new(#[1, 2, 3, 4], inf, 1);
stream = pattern.asStream;
50.do({stream.next.postln});
)

Pattern Objects: Pser

• The class Pser – a sequential list of items.
• 1st argument: a list
• 2nd argument: the number of items. Wraps if the number of items > list length
• 3rd argument: initial offset into the list. Default is 0.

• Pser is like Pseq except the second argument determines the number
of items as opposed to the number of repeats.

(
// prints out 1, 2, 3, 4, 1, 2
var pattern, stream;
pattern = Pser.new(#[1, 2, 3, 4], 6);
stream = pattern.asStream;
6.do({stream.next.postln});
)

(
// prints out 2, 3, 4, 1, 2, 3,
var pattern, stream;
pattern = Pser.new(#[1, 2, 3, 4], 6, 1);
stream = pattern.asStream;
6.do({stream.next.postln});
)

Pattern Objects: Prand

• The class Prand – choose a random item from a list of objects
• 1st argument: a list
• 2nd argument: the number of items

• If the calls to .next exceed the number of items, then nil is
returned.

(
var pattern, stream;
pattern = Prand.new(#[1, 2, 3, 4, 5], 6);
stream = pattern.asStream;
7.do({stream.next.postln});
)

Pattern Objects: Pseries

• The class Pseries – create an arithmetic series of numbers from a
starting point with a step value.
• 1st argument: starting number
• 2nd argument: step value
• 3rd argument: number of values in the series

(
// print out 1, 4, 7, nil
var pattern, stream;
pattern = Pseries.new(1, 3, 3);
stream = pattern.asStream;
4.do({stream.next.postln});
)

Functions in Patterns

• Consider the two examples above. The one on the right wraps the random start value for the
Pseries object in a function while the one on the left does not.

• Compare the output of the two snippets of code. The one on the left always has the same
random number when the stream is reset. The one on the right reevaluates the random number
when the stream is reset.

• Why? When the code on the left creates the Pseries object, the random number is evaluated
and a number is passed, creating a fixed starting number. When a function is passed in, as on the
right, the function serves as the starting value. In the source code for Pseries and many other
patterns, values are often created with the .value method which for a number will yield the
same result and for a function will evaluate the function anew each time.

(
var pattern, stream;
pattern = Pseries.new(rrand(1, 10), 3, 5);
stream = pattern.asStream;
4.do({stream.next.postln});
stream.reset;
4.do({stream.next.postln});
)

(
var pattern, stream;
pattern = Pseries.new({rrand(1, 10)}, 3, 5);
stream = pattern.asStream;
4.do({stream.next.postln});
stream.reset;
4.do({stream.next.postln});
)

Nested Patterns

• Patterns can be embedded in other patterns.
• If a Pattern encounters another Pattern in its list, it embeds that

pattern in its output. That is, it creates a stream on that pattern and
iterates that pattern until it ends before moving on.

• Documentation is unclear about which arguments of which patterns
can take other patterns. For example, you can use a pattern for
Pseries’ step but not start value. Look at source code for
answers.

(
var pattern, stream;
pattern = Pseq.new([1, Pseq.new([100, 200], 2), 3], 3);
stream = pattern.asStream;
19.do({ stream.next.postln; });
)

1
100
200
100
200
3
1

100
200
100
200
3
1

100
200
100
200
3

nil

Output

Organizing Sound: Events

• The class Event is a special dictionary that embeds all the
information for a synth to be played on a server.
• Recall that a SynthDef is a definition that encodes on the server the

connections between any number of unit generators to output sound. It also
provides names to input arguments that can be used to control that sound in
real time.

• We can use events to encapsulate the information for all the input arguments
of synths on the server.

• Like many objects in SuperCollider, events respond to the .play
message/method, providing a concise syntax for producing sound.

Creating Events

• An event is created by simply using key-value pairs enclosed in
parentheses.
• A simple event: (freq: 400)
• Key-value pairs are separated by colons. Note that I didn’t need a \ or quotes for
freq. Alphanumeric characters beginning with a letter are assumed to be symbols.

• This encodes the information for a synth with a frequency of 400. No sound is
produced… yet.

• To play the event, we can use the .play method on the event. This
initiates several actions:
• Creates a synth on the server. The user can provide an instrument. Otherwise a

default instrument is provided (a simple sine wave)
• Passes in the arguments based on the key-value pairs in the events to the synth.
• Plays the synth immediately.

A Simple Event

• Here we will make a simple event based on the \buzzSaw SynthDef
from earlier slides.
• We will need to provide the name of the instrument and, optionally,

the frequency of the note. We could also change the outbus number
since that is a parameter to the SynthDef but its default value of 0 is
perfectly fine for our purposes.

(
e = (\instrument: \buzzSaw, \freq: 400);
e.class.postln; // Verify it is an Event
e.play;
)

Events Are Dictionaries

• Events, inherited from Identity Dictionary, contain three “levels” of
dictionaries. When a value is requested via a key, an Event first looks at the
user defined pairings, then at the user defined default pairings (called
proto), and finally SC defined default pairings (called parent) to find the
key.
• Normally, an event has proto and parent set to nil.

• However, when an event is called with the play method, SuperCollider adds a default
parent dictionary that is required for the playing/creating of the synth. The play
method calls from the parent dictionary the key \play whose value is function.
That function is evaluated to play your note. Therefore, the parent dictionary is
required in order for your event to be played on the server.

• Once the play method is used on an event, the default parent dictionary is now the
parent dictionary for the event. You can see the key-value pairings by using the
method .parent.

• This default parent dictionary provided by SuperCollider is very powerful and
provides many conveniences to easily create interesting music.

A Simple Event

(
e = (\instrument: \buzzSaw, \freq: 400);
e.class.postln; // Verify it is an Event
e.play;
)

e.parent; // See the parent dictionary of the Event
e[\play]; // The function necessary to play an event
e[\freq]; // The frequency specified by the user.
e[\instrument]; // The instrument specified by the user.
e[\amp]; // The default amplitude found in the parent dictionary

// Will do nothing because amp is not a parameter to our synth

Note: you can use the class method .default to make an event with the default
parent dictionary from the moment of instantiation. You can also establish your own
parent dictionary though I recommend leaving it as is. Use a proto dictionary instead.

Pbind

• All the patterns we have seen up to this point have returned single values with .next.
We will now look at event patterns (i.e., patterns that return events).

• The class Pbind is one of the core classes for event patterns.
• It binds key symbols with value objects.
• The class Pbind takes a series of comma-separated key/values and creates a pattern of

events using these key/value pairs.
• A Pbind object is often converted into a stream of events using its instance method
.asStream, returning a routine that yields events.
• The routine that is returned requires an inval argument of a type of event.
• Generally, the default Event should be passed in as an argument.

• Like many objects in SC, Pbind has a .play instance method which returns an
EventStreamPlayer object which handles the creation of a stream but also schedules
the events for playing on the server.
• You will generally want to use this method for playing the event patterns of a Pbind.

Pbind Example
~eventPattern = Pbind(

\instrument, \buzzSaw,
\freq, Pseq([440, 880]),

);

~routine = ~eventPattern.asStream; // Routine is a special stream

// The routine created by Pbind REQUIRES an event type to be passed in
// Here we pass the default event so the parent dictionary has the default values
// Note that we produced a stream of events, but they won't be played.
~routine.next(Event.default);

~routine.reset; // Reset so we can play the events

~routine.next(Event.default).play; // Call the play method on each event

// Play the pattern. Speed is determined by the symbol \dur. Default of 1 beat.
// The method .play on a Pbind converts it to a stream (i.e., a routine) and then
// sends that information to an EventStreamPlayer which plays the events.
~eventPattern.play;

// Equivalent to ~eventPattern.play
~esp = EventStreamPlayer(~eventPattern.asStream, Event.default);
~esp.play;

(\instrument: \buzzSaw, \freq: 440)
(\instrument: \buzzSaw, \freq: 880)
nil

Simple Pbind Examples
SynthDef(\harpsichord, {

arg out = 0, freq = 440, amp = 0.1, gate = 1;
var sig, env;
env = EnvGen.ar(Env.adsr, gate, doneAction: 2);
sig = env * amp * Pulse.ar(freq, 0.25, 0.75);
Out.ar(out, sig ! 2);

}).add;

p = Pbind(
\instrument, \harpsichord,
\degree, Pseq([

// Need functions otherwise same value
Pseries({rrand(0, 7)}, 1, {rrand(0, 8)}),
Pseries({rrand(0, 7)}, 1, {rrand(0, 8)}),
Pseries({rrand(0, 7)}, -2, {rrand(0, 8)})
], inf),

\octave, 4, // Equivalent to C4 or middle C
\root, 3, // 3 semitones up from C (i.e., Eb)
\scale, [0, 2, 3, 5, 7, {rrand(8, 9)}, 11], // Harmonic/Melodic minor
\dur, 0.25

).play;

Pdef

• The class Pdef creates a reference to a pattern, allowing it to be
changed mid-stream.
• This is wonderful for real-time performance like a DJ would do

• The class Pdef takes two arguments:
• 1st argument: a name for the pattern,
• 2nd argument: a pattern (usually a Pbind for our purposes)

• All Pdef references can be found with the class method .all which
lists all the key/value pairs of name and pattern
• See lecture code example for drum set instruments and several Pdef

to control the two hi-hat, kick and snare drum sounds.

Quantization

• Both Pdef and Pbind and many other classes in SuperCollider have a
quantization method or parameter with the method .play.
• With Pdef, quantization allows for real-time changes to happen in

certain moments relative to the tempo clock that .play uses.
• Note you can pass your own tempo clock to .play.

• In the drum example in the lecture code, the quantization is set to 4
such that all changes happen on beats that are integer multiples of 4
(i.e., at the beginning of a 4/4 measure)
• Note that the quantization is set with the method .quant_
• The underscore is a shorthand for a setter method where you want to change

an internal parameter.

Further Reading

• The world of patterns, streams, and events in SuperCollider is
daunting and massive. There are many more powerful tools with
these classes that can produce wonderful musical results.
• Suggested Reading:

• Understanding Events, Patterns, and
• Pattern Guide
• Pattern Guide Cookbook
• Documentation under the class Pattern

