
What is Sound?



Topics Addressed

• Basic Physics of Sound
• Unit Generators
• Harmonic Series
• Amplitude/Loudness
• Phase
• Balanced/unbalanced cables



Basic Physics of Sound

• The brain interprets air pressure as sound
• Sound often comes in “waves” of high pressure and low pressure



What is Pitch?
• Pitch is a subjective sensory experience of a physical phenomenon.  It is a perceptual property of sound.
• Pitch is bands of compressed air moving at the same regular interval.  It is the frequency of the sound.
• Higher pitches have a higher frequency.  Lower pitches have a lower frequency.



Representing Pitch Mathematically

Sine Wave:
• Has frequency
• Periodic



Create a Sine Wave in SuperCollider

• SuperCollider has a class called SinOsc which will produce a sine wave at 
a specified frequency.
• If that object is wrapped in a function and applied the .play method, then 

an OSC message will be sent to scsynth to produce the sound.

{ SinOsc.ar(440, 0, 0.5) }.play;
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Aside: Create a stereo Sine Wave

• If you played the previous example, you may notice that the sound 
plays on only one speaker.
• By default, sounds are only sent to one speaker.  To send the same 

sine wave to both speakers, pass an array of frequencies.

{ SinOsc.ar([440, 440], 0, 0.5) }.play;

Note: a quick way to stop the sound in SuperCollider is COMMAND + PERIOD (macOS)
or CTRL + PERIOD (PC)



Liminal Frequencies

• The brain will perceive any regular occurring interval as pitch 
provided it is in the human audible range from 20-20,000 Hz.
• Let’s explore with a pulse wave.  We will talk more about pulse waves 

later but for now you can think of it as a blip of sound that occurs at a 
regular interval (i.e., at a constant frequency).
• What does it sound like with a frequency of 1 Hz?

{ Pulse.ar([1, 1], mul: 0.2) }.play;
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Try various frequencies

• Remember the low end of the human audible range is 20hz

{ Pulse.ar(4, mul: 0.2) }.play;

{ Pulse.ar(16, mul: 0.2) }.play;

{ Pulse.ar(20, mul: 0.2) }.play;

{ Pulse.ar(30, mul: 0.2) }.play;
{ Pulse.ar(40, mul: 0.2) }.play;
{ Pulse.ar(440, mul: 0.2) }.play;Concert A



Sweep through audible range

• To sweep through the audible range we can modulate the frequency of the 
pulse wave by using an exponential curve.
• The class XLine produces an exponential curve.  Here it is being passed 

into frequency argument of the pulse wave.
• Check documentation for other arguments to the pulse wave.

{ Pulse.ar(XLine.kr(10, 20000, 6), 0.1, 0.2) }.play;
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Unit Generators

• What are Pulse and SinOsc? 
• Unit Generators

• Unit Generators are the sclang representation of a sound
• A unit generator stores the necessary data for a particular signal but does not 

actually produce the sound
• A unit generator’s data is sent via OSC messages to the server (scsynth) to actually 

produce the sound
• Unit Generators come in one of three forms

• .ar -> audio rate
• .kr -> control rate
• .ir -> initialization rate

• We often abbreviate Unit Generators as UGens.



Audio Rate vs. Control Rate

• We won’t concern ourselves with initialization rate, but it is important to 
understand the distinction between audio rate and control rate.
• Specifying a UGen as audio rate implies that the UGen is intended to 

produce sound.
• Ex: {SinOsc.ar(440)}.play;

• Specifying a UGen as control rate implies that the UGen is intended to 
modulate an argument to another sound.
• Ex. { Pulse.ar(XLine.kr(10, 20000, 6), 0.1, 0.2) }.play;
• Here the XLine controls the frequency for the Pulse wave that produces the sound.
• We could have used .ar for the XLine but that is inefficient

• Control rate UGens use fewer resources and are less computationally 
expensive than their audio rate counterparts.



More on pitch

• A simple frequency – represented mathematically by a sine wave – is 
the basic building block of sound.
• When a frequency lies between 20-20000Hz, our brains will perceive 

that frequency as a pitch.
• But how then do we explain then the distinction between an oboe 

playing a concert A and a flute playing a concert A?
• We described this quality (i.e., how a note sounds) as timbre.
• There must be some physical difference between the two sounds.  What is it?



A single pitch is often many pitches!

• It turns out that when we hear a note that it is often comprised of 
many sine waves that are perceived by the brain as a single note.
• The mixture of these different sine waves creates the perception of 

timbre.
• In almost all cases, the fundamental frequency (i.e., the note we are 

perceiving) is one of the various sine waves.  Note: it is possible to 
perceive a given pitch without its fundamental.
• We call these additional sine waves partials.
• What are the other sine waves?  What are their frequencies?  What 

are their amplitudes?



Harmonic Series
• Most pitches that we perceive are complex sounds.  A complex sound is simply a note 

that consists of two or more sine waves.
• We call the individual waves in a complex sound partials.
• When we perceive a pitch in a complex sound there tend to be certain partials that are 

emphasized.  We call this pattern the harmonic series and each partial in this pattern a 
harmonic or harmonic partial. 
• A harmonic has a specific mathematical definition relative to the fundamental frequency.  If the 

fundamental frequency has frequency x, then the nth harmonic has frequency nx.  In other words, 
a harmonic is a multiple integer of the given fundamental frequency.  The harmonic series then is 
all the frequencies that satisfy nx where n >= 1 and n is an integer.

• For example: given a fundamental frequency of 100Hz (i.e., the 1st harmonic), then the second 
harmonic is 200Hz; the third is 300Hz; the fourth is 400Hz… etc.

• The term overtones refers to all the harmonic partials excluding the fundamental frequency.
• Waves that are part of a complex sound but are not part of the harmonic series are 

called inharmonic partials.
• In general, a complex sound is perceived by us as having more pitch if there are more 

harmonic partials than inharmonic partials.  More inharmonic partials create a “noisier” 
sound.



Harmonic Series

EXERCISE: Write a 
function to print the 
first 20 harmonics 
given a fundamental 
frequency:

~producePartials = {
arg fundFreq = 40, numHarmonics = 20;
var harmNum = 1, freq = fundFreq;

while({harmNum <= numHarmonics}, {
freq.postln;
freq = freq + fundFreq;
harmNum = harmNum + 1;

});
}



Harmonic Series
r = Routine({

var harmNum = 1;
var freq = fundFreq;

while({harmNum < numHarms}, {
var sig;   
("Freq is " ++ freq ++ " | Harmonic is " ++ harmNum).postln;
sig = {SinOsc.ar([freq, freq], 0, 0.3)}.play(fadeTime: 0.2);   
harmNum = harmNum + 1;
freq = freq + fundFreq;
0.7.wait;
sig.release();
0.2.wait;

});
}).play;

NOTE: This code contains syntax from sclang that we will learn in the coming weeks!

Play the
harmonic
series!



Harmonic Series

• The harmonic series occurs naturally in 
many types of instruments including 
wind and string instruments.

• The nth harmonic partial can be found 
by dividing the string into n parts

• String instruments can produce a pure 
harmonic by lightly touching the fretting 
finger at any of these nodes.



Amplitude of Partials

• The amplitude of a soundwave 
ranges from -1.0 to 1.0.

• Amplitude corresponds to our 
perception of volume/loudness

• Does the amplitude of 
harmonic partials affect how 
we perceive pitches?  Does it 
change the pitch?  Does it 
change the timbre?



Experiment #1

• What would it sound like if we play a fundamental note (say concert A 
which is 440Hz) and the first 29 of its overtones with the same amplitude?

(
var fundFreq = 300;

for(1, 20, {
arg n;
var harmFreq = fundFreq * n;  
{SinOsc.ar(harmFreq ! 2, 0, 0.04)}.play;

});
)



Experiment #2

• What would it sound like if we play the overtones with progressively 
smaller amplitudes?  For example what if we said for each nth 
harmonic, its amplitude would be 1/n of the fundamental frequencies 
amplitude?

Assume a fundamental 
frequency amplitude of 0.5



Experiment #2

(
var fundFreq = 300;

for(1, 30, {
arg n;
var harmFreq = fundFreq * n;  
{SinOsc.ar(harmFreq ! 2, 0, 0.08/n)}.play;

});
)

This actually has a special name!  It’s 
called a sawtooth wave assuming we 
have the right phases.  More soon.



Experiment #3

What if we just have two 
partials (harmonics 1 and 
12 arbitrarily) that have 
strong amplitudes and 
the rest are small?

var fundFreq = 300;
var harmonicNumA = 1;
var harmonicNumB = 12; // Try with a higher number
var largeAmp = 0.2; // Try with a lower number
var smallAmp = 0.05; // Try with a smaller number like 0.005

for(1, 30, {
arg n;
var harmFreq = fundFreq * n;
var amp;

if((n == harmonicNumA) || (n == harmonicNumB), 
{amp = largeAmp},
{amp = smallAmp}

);

{SinOsc.ar(harmFreq ! 2, 0, amp)}.play;
});



Experiment #4
What if we remove the fundamental?  Does the pitch change?  If so, how?  
Compare this against Experiment #2.  This is a sawtooth wave without the 
fundamental.

http://auditoryneuroscience.com/pitch/missing-fundamentals

(
var fundFreq = 300;

for(2, 30, { // Note how we start with the second harmonic
arg n;
var harmFreq = fundFreq * n;  
{SinOsc.ar(harmFreq ! 2, 0, 0.08/n)}.play;

});
)

http://auditoryneuroscience.com/pitch/missing-fundamentals


Conclusions

• The ear tries really hard to fuse the harmonic partials into one sound.
• It takes drastic changes in amplitudes to disrupt this perception.
• Remember this is a perception!  There really are multiple sine waves 

occurring at the same time.
• What happens when you introduce inharmonic tones?  Explore on 

your own!



Phase

• Sine waves contain three distinct 
components: frequency, amplitude, 
and phase.
• Phase refers to how far the wave is 

“shifted”
• In mathematics, a sine wave shifted 

by –𝜋/2 radians or by 3𝜋/2
radians results in a cosine wave. 

• We would say the two waves are 
90o or 𝜋/2 radians out of phase.

phase
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Phase of a Single Wave

• Shifting a single sine wave does not result in a change to our 
perception.
• It would still be the same frequency(s) and the same amplitude(s).

• Let’s test it!  We should not hear any difference.

// A normal sine wave
{SinOsc.ar([440, 440], 0, 0.6)}.play;

// A sine wave shifted back to make a cosine wave
{SinOsc.ar([440, 440], -pi/2, 0.6)}.play;



Two Waves in Phase

• Phasing becomes interesting when we consider two or more waves.
• Let’s take two sine waves each with amplitude of 0.5.
• What do we think will happen?

+ =



Two Waves in Phase

+ =

• Two sine waves in phase will double in amplitude
• Waves “in phase” will become louder because their amplitude increases

{SinOsc.ar([440, 440], 0, 0.5) + SinOsc.ar([440, 440], 0, 0.5)}.play;



Two Waves Out of Phase

• We saw that adding two sine waves in phase doubled the amplitude 
of the wave.  It did not change the phase of either wave or their 
frequency.
• What happens if we try to play two sine waves out of phase?  

Remember this is equivalent to adding the two waves together.

+ =



Two Waves Out of Phase

• When two waves are completely out of phase, we hear no sound!
• Summing the amplitudes vertically amounts to summing to zero at 

any given point in time (the x axis)

+ =

{SinOsc.ar([440, 440], 0, 0.5) + SinOsc.ar([440, 440], -pi, 0.5)}.play;



Aside: Balanced Cables

• Problem: many musical cables are susceptible to noise as the signal passes 
through the wire, distorting the original waveform.
• Solution: balanced cables which take advantage of signal cancelling.  Here 

though, waves are not shifted but rather inverted.
• Inverting a waveform changes its polarity.  You can think about this as 

reflecting the waveform across the x-axis.

+ = =



Aside: Unbalanced Cables

=

Original Signal Noise

+ Distorted Signal



Aside: Balanced Cables

• Send two signals along two wires but switch the polarity of one of the 
signals.
• When the signal arrives flip the polarity of the signal that was first 

inverted.
• This will cancel out the noise and leave the original signal intact.



+

+

Wire 2 has its polarity inverted initially.  As the 
signal traverses through both wires, each wire 
picks up the same noise signal, distorting both 
signals.

Wire 1

Wire 2

+

+

When both wires reach the destination, wire 
2’s signal is inverted and combine with wire 1.  
What happens?  Well the original signal is in 
phase and the original noise signal and the 
inverted noise signal cancel each other out, 
leaving only the original signal.

Wire 1

Wire 2



Intervals

• Our perception of intervals (octaves, fifths, fourths… etc.) are not based on 
absolute differences between frequencies but instead on ratios between 
frequencies.
• Given some frequency f, the octave above f is simply 2f.  This means that a 

pitch of 200Hz has an octave above at 400Hz and a frequency of 330Hz has 
an octave above of 660Hz.  Note that the absolute differences of 400Hz –
200Hz = 200Hz and 660Hz – 330Hz = 330Hz are not the same.  We can’t 
simply add, say 200Hz, to every pitch and get an octave.
• Remember this is a perception.  Fittingly, note that the first overtone is an 

octave above the fundamental.  The octave is natural to our way of 
perception and is found in the music of virtually every culture across the 
globe.



Intervals

• Given that we know that every successive octave is twice the 
frequency of the previous octave, can we derive a formula to express 
the frequency of the nth octave given some starting frequency?

𝑓 = 𝑓!"!# ∗ 2"

(
var freq = 440, n = 3;
~octaveFreq = {arg freqInit, n; freqInit * (2 ** n)};
{

SinOsc.ar([freq, freq]) + 
SinOsc.ar([~octaveFreq.value(freq, n), ~octaveFreq.value(freq, n)])

}.play;
)



Intervals
• Every interval is simply a set ratio of two frequencies.  That set ratio for 

octaves is two. 
• Since intervals are based on ratios of frequencies, our perception is based 

upon an exponential/logarithmic scale as the formula on the previous slide 
indicates for octaves.
• There are many systems to determine the precise ratios of intervals.  These 

systems are called temperaments.  
• Equal temperament, the system most commonly used in Western music, sets the 

frequencies for every note by ensuring that the frequency between any two adjacent 
notes (i.e., a semitone) is the same.  Equal temperament states that 12 semitones 
must equate to a perfect octave defined here to be twice the frequency.

• For your problem set, you will derive what that ratio number should be and 
code up a small example to calculate an interval generator given some 
initial starting frequency.



In summary

• Sine waves are the basic building blocks of sound.
• The important properties of sine waves are amplitude, frequency and 

phase.
• Amplitude corresponds to how loud a sound is
• Frequency corresponds to pitch
• Phase applies to two or more waves and can create intentional or unintentional 

noise cancellation or boosting
• Complex sounds consist of two or more sine waves.  Many of the pitches 

that we hear are complex sounds.  Complex sounds are perceived as one 
pitch when the waves mimic the harmonic series.
• It is important to distinguish between the physical realities of sound and 

the way we perceive sounds.


