
Synth Defs

Topics Addressed

• {}.play
• SynthDefs
• Synth
• Plot Tree
• Nodes/Groups
• Busses
• Order of Execution

{}.play

• We have seen how .play method for a function produces sound.
But let’s unpack what exactly is happening. From the documentation:

• It turns out that any function called with .play gets converted into a
SynthDef. The SynthDef gets instantiated on the client-side (sclang)
and on the server-side (scsynth). But what is a SynthDef?

SynthDefs

• A SynthDef defines a sound to be played back at a later time. The
definition needs to be defined in two places: sclang and scsynth.
• On the client-side (sclang), we provide a SynthDef a name and a Function

which details the UGens used and how they are connected.
• Once the definition is written, it is converted to OSC (Open Sound Control)

messages that are passed along the network (either local or remote) to
scsynth where scsynth translates the message into a definition for its
purposes.

• Defining a sound is not the same thing as playing a sound in much the
same way that defining a function is not the same thing as invoking a
function.

Comparison

(
x = SynthDef.new(\sineWave, {

var sig = SinOsc.ar(440);
Out.ar(0, sig);

}).play;
)
x.free;

x = {SinOsc.ar(440)}.play;
x.free;

The SynthDef on the right is
nearly equivalent to the code
on the left. All functions with
the .play method get
converted to a SynthDef

• SynthDefs provide the flexibility of providing
a name for the definition.

• Unlike using {}.play, SynthDefs need to
specify where the signal should be
outputted. Much more on this in a bit.

• SynthDefs also provide the flexibility of
passing in arguments.

• {}.play provides a nice shorthand
for the SynthDef version on the right
to generate sound quickly, often for
testing purposes.

• SynthDefs are the preferred way to
write sound and what we will be using
going forward.

Using .add

• The .play method on a SynthDef actually conflates two separate processes: 1)
writing the definition to both the client and server, and 2) invoking an instance of
the definition (i.e., a Synth) on the server to play the sound.

• The .add method performs the first but does not create the sound. This is
actually quite useful, because we generally want to write our definition once but
invoke it many times.

(
SynthDef(\sineWave, {

arg freq = 440;
var sig = SinOsc.ar(freq);
Out.ar(0, sig);

}).add;
)

Here we provide a
default argument that
we can set with each
Synth instance.

Synth

• Once a synth has been added, we can play the sound by creating a Synth object,
which is an instance of our SynthDef.

• We can also pass along any arguments to the specific instance by providing an
optional array of arguments.

• We can stop the sound using the .free method and update arguments through
.set

~synth1 = Synth(\sineWave);
~synth1.free;
~synth2 = Synth(\sineWave, [\freq, 300]);
~synth2.set(\freq, 200);
~synth2.free;

Exercise
Define a SynthDef called \sqTri that crossfades between a sine wave
and a non-bandlimited triangle wave. Use the UGen XFade2 to do the
crossfade and use a sine oscillator to control the rate of playback
between the square and triangle waves. I suggest a frequency of 0.25.

(
SynthDef(\sqTri, {

arg out = 0, freq = 100, amp = 0.2;
var sine, tri, sig;
sine = SinOsc.ar(freq);
tri = LFTri.ar(freq);
sig = XFade2.ar(sine, tri, SinOsc.kr(0.25));
Out.ar(out, sig * amp);

}).add;
)

Plot Tree
• On the server, allocated synths are organized into groups that

can be viewed by calling the .plotTree method on the
server (usually represented by the variable s).

• By default, all synths are put into the default group. The
default group can also contain other groups which can contain
any number of synths or groups.

• Groups are useful because you can send the same message to
all synths within the group.

• Both groups and synths are called nodes. They both share the
parent class Node. Thus, all instance methods for Node will
work on groups and synths.

• Calling .free on any synth will remove it from the Node Tree.
It is important to do so, as this will free up valuable resources
on your computer. Freeing is an important concept that
extends to many systems in your computer and allows
multiple to programs to share resources efficiently.

Creating Groups
s.plotTree; // Visualize the plot tree
(
~group1 = Group(s.defaultGroup); // Create a group inside

// the default group
~group2 = Group(s); // Does the same things as above.
~group3 = Group(~group1, \addBefore); // The action

// addBefore specifies
// to place above Group 3

)

(
// Add to group1
~synth1 = Synth(\sineWave, [\freq, 200], ~group1);
// Add to group2
~synth2 = Synth(\sineWave, [\freq, 300], ~group2);
// Add to group3
~synth3 = Synth(\sineWave, [\freq, 400], ~group3);
// Add to group of synth1 but before it
~synth4 = Synth(\sineWave, [\freq, 500], ~synth1, \addBefore);
)

~group1

~group2

~group3

~synth1
~synth4

~synth2

~synth3

ORDER OF GROUPS AND SYNTHS
MATTER. We shall see why soon.

Power of Groups
(
SynthDef(\sineWaveWithAmp, {

arg freq = 440, amp = 0.5;
var sig = SinOsc.ar(freq, 0, amp);
Out.ar(0, sig);

}).add;
)

~group1 = Group(s);
~synth1 = Synth(\sineWaveWithAmp, target: ~group1);
~synth2 = Synth(\sineWaveWithAmp, [\freq, 880], ~group1);

// Send the set message to all nodes in the group!
~group1.set(\amp, 0.1);

Busses

• The UGen Out specifies a bus index as its first argument. What exactly is a
bus? A bus is simply a way to route information. Busses are used in
computer hardware and many other electronics, including analog mixers.
• Busses can be used to send signals internally between SuperCollider synths

or between hardware inputs/outputs.
• At startup, SuperCollider allocates 1024 busses for audio rate transmission

of data as well as control rate busses.
• Note these defaults can be changed. See ServerOptions.

• The UGen Out can be used to send signals to hardware busses to output
sounds to your computer speakers or to other SynthDefs on the server.
• Busses can be either control rate or audio rate depending upon the data

being sent.

Busses as Handles

• Busses are handles (abstract references to computer resources). In
this case, the reference is an integer and the resource is the
input/output devices.
• Other kinds of handles include file descriptors, network sockets, PIDs… etc.

• All SynthDefs need to know where to send their data and therefore
must have an Out UGen.
• Out takes two arguments: an integer index representing a bus and an array of

signals or single signal to output.
• {}.play actually generates an Out UGen but this is abstracted away from the

user as a convenience.

Bus Organization
• There are two types of busses: control rate and audio rate busses

• Control Rate busses pass along control rate information from UGens
• By default SuperCollider allocates 16384 busses for control rate data. This can be checked by

running the code s.options.numControlBusChannels (assumes that the server is stored in
the variable s).

• Audio Rate busses pass along audio information and are separated into three distinct
sections. The total number of audio busses can be found with
s.options.numAudioBusChannels. By default, that number is 1024.
• Output devices: bus indices from 0 to s.options.numOutputBusChannels – 1 are reserved

for hardware output devices. The user will generally configure the number of output bus
channels at the start of sc file and set the input/output device. If none is provide, the
system’s default input/output device will be used.

• Input devices: bus indices starting at s.options.numOutputBusChannels for all
s.options.numInputBusChannels are reserved for hardware input devices. The input
device need not match the output device.

• The remaining busses are ‘private’ busses intended for internal routing between synths on
the server.

• Example, suppose that we have a two output audio device and a two input audio device and
the number of channels has been set properly for both, then bus indices 0-1 would be output,
2-3 would be input and 4-1023 would be private.

Simple Example

(
SynthDef(\sineWaveWithAmp, {

arg freq = 440, amp = 0.5;
var sig = SinOsc.ar(freq, 0, amp);
Out.ar(0, sig);

}).add;
)

The signal to be passed
into a bus.

Bus handle of 0 typically
means that it will flow
to the first output
channel on the output
device (usually the left
speaker)

Multichannel Busses

• Most audio signals are stereo (2-channel) to accommodate left and
right speakers.
• There is no notion of a multichannel bus. Instead audio signals with

multiple channels are sent through adjacent bus indices. Each bus
supports only a mono signal (i.e., 1 channel).

• Out is deceptive in the sense that the user only provides a single
integer for a bus index regardless of how many channels constitute
the signal. Because signals are adjacent, any array of signals is laid
out in contiguous order.

Stereo Signal

(
SynthDef(\sineWaveWithAmp, {

arg freq = 440, amp = 0.5;
var sig = SinOsc.ar(freq, 0, amp);
Out.ar(0, [sig, sig]);

}).add;
)

Multichannel signal. The
first sig will be passed
through bus index 0 and
the second will be passed
through bus index 1.
Here, left and right
speakers.

Bus handle of 0 is the
starting bus index of any
n-channel signal.

Connecting Synths

• Synths are connected with three classes: Out, In, and Bus
• To connect synths, we must use the ‘private’ busses. The

documentation specifically indicates not to use hardware
input/output busses to connect synths.
• The In class accepts two arguments: an integer index for a bus handle

and the number of channels of the incoming signal
• Note that this integer index represents the first bus index of a n-channel

signal
• Bus provides a means to select the first available private busses and

assign them names. In general, you should use this class to assign
busses.

In/Out example
SynthDef(\sineExample, {

arg out = 0, freq = 440, amp = 0.2, ampFreq = 0.5;
var volume = SinOsc.kr(ampFreq, 3 * pi / 2, amp/2, amp/2);
Out.ar(out, [Saw.ar(freq, mul: volume),

Saw.ar(freq + 1, mul: volume)]);
}).add;

SynthDef(\delay, {
arg out = 0, in;
var sig, delaySig;
sig = In.ar(in, 2);
delaySig = DelayN.ar(sig, 0.6, 0.6);
Out.ar(out, sig + delaySig);

}).add;

• Here the sine SynthDef can be
played normally just as we have
done before. It’s a stereo signal (2-
channel). But now we will redirect
its output to the delay synth.

• The delay synth needs an in
argument to specify which starting
bus handle to listen on. Note that
the variable sig now constitutes a
stereo signal.

• Note that we have arbitrarily
chosen bus handle 4 to pass our
information.

Delay the sound by 0.6
seconds and add it to the
original sound. More on
delays soon!

Detuning can “widen” the sound.

a = Synth(\sineExample, [\out, 4]);
r = Synth(\delay, [\in, 4], a, \addAfter);
s.plotTree;
a.free;
r.free;

Why is choosing bus handle 4 bad?

Using Bus
(
~delayBus = Bus.audio(s, 2);
"Bus index is ".post;
~delayBus.index.postln;
a = Synth(\sineExample, [\out, ~delayBus]);
d = Synth(\delay, [\in, ~delayBus], a, \addAfter);
)

(
a.free;
d.free;
~delayBus.free;
)

• Here we forgo using a hardwired bus
handle of 4 and allow sclang to select
the first available bus number for us.

• Notice that we have chosen to create an
audio bus and that we will be using a 2-
channel signal

• In our Synths we will specify the Bus we
have chosen as our input and output,
respectively.

• Notice also that we free the bus when
we are done. Freeing releases the bus
handles associated with the bus so they
can be used for transferring other
information. If your code uses many
busses, you could potentially run out of
available busses.

Order of Execution

a = Synth(\sineExample, [\out, 4]);
r = Synth(\delay, [\in, 4], a, \addAfter);

• In the previous slide, we deliberately added the reverb
synth after the sine synth. It turns out we must do this.

• UGens get processed in a top down order by synth on the
server. If the delay gets processed before the sine wave
does, then no sound will be produced.

• Here, we ensure that the delay gets added after the sine
example by specific the sine example as a target and an
action of “addAfter”.

• Order of execution matters only for those synths that use
In

• Groups are useful for solving this issue. Placing sounds in
one group and effects in another group ensures a proper
order of execution.

a = Synth(\sineExample, [\out, 4]);
r = Synth(\delay, [\in, 4], a, \addBefore); This will produce no sound!

More on Order of Execution

• Audio content is generally delivered to DAC or received by an audio
application (like SuperCollider) in block sizes called frames (simply
another word for a buffer or array of audio data)
• Frames are important so that the operating system is not taxed with

expensive I/O operations for every sample of audio data.
• The downside is that latency can occur during recording as there is delay due

to the time it takes to complete the data for a frame and send it to the
application. 64/128 samples for a frame is typical for recording purposes.

• SuperCollider adopts a similar approach, creating blocks of audio data
that gets sent to the driver in charge of processing audio data
• Drivers are low level programs that are used to interface with hardware

components in the computer.

More Complicated Example
(
~delayBus = Bus.audio(s, 2);
~synths = List[];
[440, 523.25, 659.25, 783.99].do({

arg freq, index;
var synth = Synth(\sineExample, [

\out, ~delayBus,
\freq, freq,
\amp, 0.1,
\ampPhase, index * pi/2,
\ampFreq, 0.3 - (0.05 * index)

]);
~synths.add(synth);

});
~synths.add(Synth(\delay, [\in, ~delayBus], addAction: \addToTail));
)

Plays a swelling Am7 chord

~synths.do({arg synth; synth.free});
~delayBus.free;Free resources on server

