
Math Review for CS203

1 Sinusoids

What are sinusoids? Sinusoids are sine waves and cosine waves of any periodicity, amplitude and phase.
For the purposes of this primer, I will assume that you are familiar with both sine and cosine waves. For
reference though, Figure 1 shows graphs of both sinusoids. Note that we are using the variable t here as
opposed to something like x. Sinusoids in music often relate to changing air pressure as a function of time,
hence the variable t. We perceive these fluctuations as sound.

1.1 Amplitude, Phase, and Frequency

Sinusoids comes in all sorts of variations. The general form of any sine wave is A sin(2πft+ φ) where A
is ampltiude, f is frequency, and φ is phase. We can express a similar statement for a cosine wave as well:
A cos(2πft+ φ). Let’s examine how each of these parameters affect the shape of our sinusoid.

First consider amplitude A. Figure 2 shows sin(t) while the graph on the right shows 2 sin(t). What
is different about these two graphs? The latter has been stretched vertically by twice the amount. The
peak amplitude of sin(t) is 1 while the peak amplitude of 2 sin(t) is 2. This should make intuitive sense. If
we multiply the output of sin(t) by two we should expect twice the output. Mathematically, this is just a
specific example of a function transformation. Any function f(t) can be scaled vertically by some factor k
by performing kf(t). The larger k is the more vertically stretched the resulting function is. Therefore, the
constant A stretches a sinusoid vertically. You’ll soon learn that this makes a sound louder.

Let’s examine the role 2πf plays. Figure 3 shows sin(t) and sin(2πt). What impact did 2π in sin(2πt)
have compared to sin(t)? The period of the sine wave is now smaller. The period of a sine wave is the length
of time it takes for the wave to complete one cycle. For sin(t), the period is 2π (roughly equivalent to ≈ 6.28).
You can test this yourself. Any value of sin(t) is equivalent to sin(2π + t). For example, sin(0) = sin(2π) or
sin(π4 ) = sin(2π+ π

4 ). So how does multiplying t by 2π change the period? Essentially, we have sped up the
time it takes for a sine wave to complete its cycle. Take sin(0). We just stated that sin(0) = sin(2π). So
if we multiply t by 2π, it should take 1 second for the sine wave to complete its cycle. In fact, that is the

Figure 1: A graph of sin(t) on the left and cos(t) on the right
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Figure 2: A graph of sin(t) on the left and 2 sin(t) on the right
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Figure 3: A graph of sin(t) on the left and sin(2πt) on the right
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period of sin(2πt)! Look again at Figure 3. You’ll see that sin(2πt) starts a new cycle on every second.
Like amplitude, multiplying our variable t by some value produces a function transformation. For a

function f(t) and constant k, f(kt) shrinks or stretches f(t) horizontally. The larger k is the more our
function shrinks. When k is a multiple of 2π, we will find that our sine wave completes an integer number
of cycles per second. We can generalize this as 2πf where f , the frequency, represents the number of cycles
the sine wave completes every second. The unit for cycles per second is Hertz, often abbreviated Hz. The
frequency of a sound wave plays a pivotal role in how we perceive the pitch of sound. For this reason, we
often want to think about the frequency of our waves. Expressing a sine wave as sin(2πft) is a nice way
of expressing the frequency. As an example, look at Figure 4 which displays sin(2π(3)t) and sin(2π(4)t).
Notice that the former completes three cycles in one second and the latter completes four.

Note that you will sometimes see the expression 2πf in the general form for a sine or cosine wave expressed
as ω as in A sin(ωt + φ) or A cos(ωt + φ). ω is called the angular frequency. Changes to ω affect sinusoids
in the same way changes to f in 2πf transform sinusoids.

The last parameter to consider is phase, often notated as φ. Look back at Figure 1. If we look at sin(t)
and cos(t), you will notice they are very similar. If we were to shift cos(t) to the right by π

2 , it would look
exactly like sin(t). We can say then that sin(t) and cos(t) are out of phase by π

2 . Changing φ shifts a sinusoid
to the left or the right. If f(t) is a function and k is a constant, then f(t + k) shifts f(t) to the left or the
right by k. Note that if k is negative, f(t) is shifted to the right and if k is postive f(t) is shifted to the left.
Therefore, we can say then that cos(t) = sin(t+ π

2 ) or that sin(t) = cos(t− π
2 ). We can’t really perceive the

phase of a sound. A sine wave of frequency 400Hz sounds exactly the same to us as a sine wave of frequency
400Hz shifted to the right by π/3. However, phase becomes very important when we start to consider the
interaction of multiple sinusoids. Stay tuned!
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Figure 4: A graph of sin(2π(3)t) on the left and sin(2π(4)t) on the right
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1.2 Unit Circle

Interestingly, the output of any sinusoids can be plotted as a circle! The unit circle is a plot that shows
the output of sin(t) and cos(t). The inner numbers of the circle depict the values of t for both sin(t) or cos(t).
For the purposes of this class, we will never use degrees. All input values for sinusoids will be radians. The
outer values around the circle depict (cos(t), sin(t)). You should strive to memorize the unit circle as best
you can. At the very least, you should be able to recall quickly in which quadrants sin(t) and cos(t) are
positive/negative.
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The unit circle can be very helpful for computing inverse trigonometric functions. For example, consider
the function sin−1. What is the result of sin−1(− 1

2 )? An inverse function maps the output of some function
(in this case, sin) back to its domain. We can use the unit circle to help solve this problem. Look at the
outer numbers along the circle. Where does sin(t) produce a value of − 1

2? Answer: at 4π
3 and 2π

3 .
We won’t use inverse functions too much in this class with the exception of tan−1. Recall that tan(t)

is equivalent to sin(t)
cos(t) . To compute tan−1(x), we need to find the ratio of sine to cosine that produces x.

Consider, tan−1(1). If we look at the unit circle, we want to find where sin(t)
cos(t) = 1. There are two locations:

at π
4 and 5π

4 . If we know that sine and cosine are positive or negative, we can narrow our two possible
solutions to one. For example, if sine and cosine were both negative, then we know that the answer must be
5π
4 . In general, I will try and indicate positive/negative nature of sine and cosine.

1.3 Exercises

1. Graph the function 0.5 sin(2π(2)t− π
2 ) by hand.

2. Consider the difference between A sin(2πft+ φ) and −A sin(2πft+ φ).

(a) Explain how A sin(2πft+ φ) is transformed when the function is multiplied by −1.

(b) Write an equivalent expression to −A sin(2πt+φ) that does not use any negative signs. Note the
frequency of 1. Hint: consider changing the phase!

3. What is tan−1(−
√

3) if sin is negative?

2 Trigonometric Identities

Trigonometric indentities will be useful throughout the course of this class. In particular, they will be
helpful for reducing complex expressions. We will be referring to these identities throughout the class. Not
all the identities will be useful to us but for completeness they are listed below.

2.1 Identities

You may always use these identities without proof for all exercises in this course.

Reciprocal Functions

cotx =
1

tanx

cscx =
1

sinx

secx =
1

cosx

Even/Odd

sin(−x) = − sinx

cos(−x) = cosx

tan(−x) = − tanx
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Pythagorean Identities

sin2 x+ cos2 x = 1

1 + tan2 x = sec2 x

1 + cot2 x = csc2 x

Cofunction Identities

sin(
π

2
− x) = cosx

cos(
π

2
− x) = sinx

tan(
π

2
− x) = cotx

cot(
π

2
− x) = tanx

sec(
π

2
− x) = cscx

csc(
π

2
− x) = secx

Sum and Difference Angles

sin(x+ y) = sinx cos y + cosx sin y

sin(x− y) = sinx cos y − cosx sin y

cos(x+ y) = cosx cos y − sinx sin y

cos(x− y) = cosx cos y + sinx sin y

tan(x+ y) =
tanx+ tan y

1− tanx tan y

tan(x− y) =
tanx− tan y

1 + tanx tan y

Double Angles

sin(2x) = 2 sinx cosx

cos(2x) = cos2 x− sin2 x = 2 cos2 x− 1 = 1− 2 sin2 x

tan(2x) =
2 tanx

1− tan2 x

Half Angles

sin
x

2
= ±

√
1− cosx

2

cos
x

2
= ±

√
1 + cosx

2

tan
x

2
=

1− cosx

sinx
=

sinx

1 + cosx

5



Power Reduction

sin2 x =
1− cos 2x

2

cos2 x =
1 + cos 2x

2

tan2 x =
1− cos 2x

1 + cos 2x

Product To Sum

sinx sin y =
1

2

[
cos(x− y)− cos(x+ y)

]
cosx cos y =

1

2

[
cos(x− y) + cos(x+ y)

]
sinx cos y =

1

2

[
sin(x+ y) + sin(x− y)

]
tanx tan y =

tanx+ tan y

cotx+ cot y

tanx cot y =
tanx+ cot y

cotx+ tan y

2.2 Exercises

1. Show that csc(θ) cos(θ) tan(θ) = 1.

2. Simplify cot(x) cos(x)
tan(−x) sin(π

2−x)
.

3. Show that tan(x + y) = tan(x)+tan(y)
1−tan(x) tan(y) starting from sin(x+y)

cos(x+y) and using sum and difference angle

identities.

3 Summation Notation

Summation notation is a way of succinctly expressing the sum of a series of discrete values or expressions.
A very simple example of a sum of dicrete values might be 1 + 2 + 3 + 4 + 5. This is certainly easy enough
to write but consider the sum of all integers from 1 to 1000. That would be quite lengthy to write out.
Summation notation provides a shorthand for these kinds of notational issues.

3.1 Sigma

Summation notation uses the greek letter Σ. Consider the simple example again of 1 + 2 + 3 + 4 + 5.
Here is that sum expressed using summation notation.

5∑
i=1

i

Sigma notation defines a variable (in this case i) at some starting point below the Σ. The number above
Σ represents the end value of i in the series. The expression to the right of Σ is the expression to be summed
for each value of i starting from i = 1 to i = 5. You will also see summation notation alternatively expressed
as
∑5
i=1 i where the start and end values of i are to the right of Σ.

Consider the example below:
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4∑
i=1

i2

What is the example equivalent to? We need to sum the expression i2 for all values of i from 1 to 4.
Thus,

∑4
i=1 i

2 = 12 + 22 + 32 + 42 = 30.

3.2 Summation Identities

The following list of identities are meant to be a reference for you throughout the semester. I won’t prove
them here but most of them should make intuitive sense if you write out a few examples. Note that c here
is any constant.

t∑
n=s

c · f(n) = c

t∑
n=s

f(n)

n∑
i=1

c = nc

t∑
n=s

f(n)±
t∑

n=s

g(n) =

t∑
n=s

(f(n)± g(n))

t∑
n=s

f(n) =

j∑
n=s

f(n) +

t∑
n=j+1

f(n)

3.3 Summation Notation and Sinusoids

Why is summation notation relevant to a Computer Music class? You will soon learn that many sounds
can be expressed as a sum of sinusoids. It’s natural to the way we perceive sound. For example, one of
the foundational sounds is a sawtooth wave. A sawtooth wave of frequency f can be expressed as a sum of

sinusoids A sin(2π(1)ft)
1 + A sin(2π(2)ft)

2 + A sin(2π(3)ft)
3 + ... etc. It turns out that this is an infinite sum! We

can use summation notation to express a sawtooth wave succinctly:

∞∑
n=1

A sin(2πnft)

n

3.4 Exercises

1. Calculate
∑3
i=0(6 +

√
4i).

2. Write a summation for the following expression: −A sin(2π(1)ft)
1 +A sin(2π(2)ft)

4 −A sin(2π(3)ft)
9 +A sin(2π(4)ft)

16 +
...etc. Hint: think about how you can use exponents to flip the negative sign.

3. Express the following infinite sum using summation notation: 1− 1
3 + 1

5 −
1
7 + 1

9 ....

4 Complex Numbers

You have likely encounter complex numbers prior to college. What exactly are complex numbers? The
origin for complex numbers lies in square roots. Recall that the square root of a number n is a number z
such that z2 = n. If n is a positive number, there exist exactly two roots: one positive and one negative.
For example, say n = 4. Then there are two solutions to z2 = 4: z = 2 and z = −2. Notationally, if we want
to express the roots of n, we use ±

√
n which yields ±z. If we want the positive root of n, we simply write√

n and if we want the negative root of n, we write −
√
n.
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The trouble comes when n = −1 or any other negative number. What is the solution to z2 = −1?
Unfortunately, there does not exist any real number z that satisfies this equation. No number multiplied by
itself yields a negative result! Therefore, we say that the solution to this equation is some imaginary number
i such that i2 = −1. We know of course that i is not a real number, but providing a framework to reason
about such solutions becomes mathematically useful.

Suppose we want to find the solutions to a2 = −3. Now we can do so having defined i. First let’s start
by solving

z2 = 3

We can readily see that z = ±
√

3. Now let’s do the following:

z2 = 3

(−1)z2 = (−1)3

i2z2 = −3

(zi)2 = −3

Since z = ±
√

3, then we can say a = ±
√

3i for a2 = −3.
It turns out we can think about numbers as having a real and imaginary component. We call them

complex numbers. Every number can be written in the form a + bi where a and b are real numbers. a
represents the real component of the number and bi represents the imaginary component of the number. All
the real numbers that we are familiar with simply have b = 0, indicating there is no imaginary component.
This implies that the real numbers are a subset of the complex numbers.

There are two basic computational definitions with complex numbers. To add two complex numbers
a+ bi and c+ di, we simply compute (a+ b) + (c+ d)i. Notice that the imaginary components add together
and the real components add together. To multiply two complex numbers a + bi and c + di, we compute
(ac− bd) + (bc+ ad)i.

4.1 Complex Numbers and CS203

Why do we care about complex numbers in a computer music class? There is nothing “imaginary”
about any musical signal. There are two reasons. We can think of complex numbers as analgous to our x, y
coordinate system. The x axis represents the real part of the number and the y axis represents the imaginary
part of the number. A point on the coordinate system encodes information about its imaginary and real part
separately. As a result, complex numbers provide a convenient system to keep track of two pieces of data.
For example, say you want to keep track of apples and oranges, and you have three apples and two oranges.
How could we express that using a single number? We could use a complex number. Maybe we say that
apples are represented by the real component and oranges are represented by the imaginary component. We
might then say that three apples and two oranges is equivalent to 3 + 2i. There is nothing imaginary about
the oranges but we leverage the fact that complex numbers provide a convenient interface to keep track of
these two things. This will become important when we discuss the Discrete Fourier Transform.

The second reason is we can relate sinusoids to complex exponentials. Leonhard Euler discovered one of
the great equations in mathematics. His equation is presented below:

eix = cosx+ i sinx

The equation brings together some of the most important numbers and functions in math such as sinu-
soids, e, and i. Using his identity, we can show the following:

cos(θ) =
1

2
(eiθ + e−iθ)

sin(θ) =
1

2i
(eiθ − e−iθ)

Crazily enough, we can express the sinusoids that we will use in CS203 as complex exponentials! While
the above two equations may seem daunting, transforming sinusoids like sin and cos into exponentials can
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actually make calculations much easier, including proving many of the trigonometric identities stated above.
Therefore, a lot of digital signal processing performs calculations on sinusoids in terms of their form in
complex exponentials. We will not work much with Euler’s identity in this course or complex exponentials
but near the end of the course we will need them to understand several foundational ideas in computer music
and digital signal processing.

4.2 Exercises

1. Find the solutions to z2 = −4.

2. Consider x = 3 + 2i and y = 2− i.

(a) What is x+ y?

(b) What is xy?
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