Analysis of algorithms

- Major field that provides tools for evaluating the efficiency of different solutions

What is an efficient algorithm?

- Faster is better

How do you measure time? Wall clock? Computer clock?

- Using less space is better

- But if you need to get data out of main memory it takes time

Algorithm analysis should be independent of

- Specific implementations and coding tricks (programming language, control statements)
- Specific Computers (hardware chip, OS, clock speed)
- Particular set of data

- But size of data should matter

public void selectionSort (int[] data) {
 int maxNum; // max integer
 int maxIndex; // index of max integer
 int i, j;
 for (j = data.length - 1; j > 0; j--) {
 maxIndex = 0;
 maxNum = data[0];
 for (i = 1; i <= j; i++)
 if (data[i] > maxNum) {
 maxNum = data[i];
 maxIndex = i;
 }
 swap(data, maxIndex, j);
 }
}

static void swap (int[] data, int i, int j) {
 swap(data, maxIndex, j);
}

public void selectionSort (int[] data) {
 int maxNum; // max integer
 int maxIndex; // index of max integer
 int i, j;
 for (j = data.length - 1; j > 0; j--) {
 maxIndex = 0;
 maxNum = data[0];
 for (i = 1; i <= j; i++)
 if (data[i] > maxNum) {
 maxNum = data[i];
 maxIndex = i;
 }
 swap(data, maxIndex, j);
 }
}

public void selectionSort (int[] data) {
 int maxNum; // max integer
 int maxIndex; // index of max integer
 int i, j;
 for (j = data.length - 1; j > 0; j--) {
 maxIndex = 0;
 maxNum = data[0];
 for (i = 1; i <= j; i++)
 if (data[i] > maxNum) {
 maxNum = data[i];
 maxIndex = i;
 }
 swap(data, maxIndex, j);
 }
}

public void insertionSort (int[] theArray, int n) {
 for (int unsorted = 1; unsorted < n; ++unsorted) {
 int nextItem = theArray[unsorted];
 int loc = unsorted;
 while ((loc > 0) && (theArray[loc-1] > nextItem)) {
 theArray[loc-1] = theArray[loc--];
 }
 theArray[loc] = nextItem;
 }
}

public void insertionSort (int[] theArray, int n) {
 for (int unsorted = 1; unsorted < n; ++unsorted) {
 int nextItem = theArray[unsorted];
 int loc = unsorted;
 while ((loc > 0) && (theArray[loc-1] > nextItem)) {
 theArray[loc-1] = theArray[loc--];
 }
 theArray[loc] = nextItem;
 }
}

Both algorithms sort correctly.
Is one better than the other?
public void selectionSort(int[] data) {
 int maxNum; // max integer
 int maxIndex; // index of max
 int i, j;
 for (j = data.length - 1; j > 0; j--) {
 maxIndex = 0;
 maxNum = data[0];
 for (i = 1; i <= j; i++) {
 if (data[i] > maxNum) {
 maxNum = data[i];
 maxIndex = i;
 }
 }
 swap(data, maxIndex, j);
 }
}

void swap(int[] data, int i, int j) {
 // exchanges the contents of
 // data[i] and data[j]
 int temp = data[i];
 data[i] = data[j];
 data[j] = temp;
}

/*
 Algorithms solving two different problems.
 Is one more difficult than the other?
 */

public void solveHanoiTowers(int n, char source, char dest, char spare) {
 if (n==1)
 System.out.println("Move top disk from " + source + " to " + dest);
 else {
 solveTowers(n-1, source, spare, dest);
 solveTowers(1, source, dest, spare);
 solveTowers(n-1, spare, dest, source);
 }
}

/*
 Counting an algorithm’s operations
 is a good way to assess its efficiency
 An algorithm’s execution time is related to the number of operations it requires in a worst case scenario
 Examples of worst case scenarios
 • Searching a linked list
 • Operations: about as many as elements
 • Selection sort
 • Operations: as we go through the array to select the next minimum, we traverse most of the array again
 • The Towers of Hanoi
 • Operations: to solve an instance of n disks,
 we need to solve 2 instances of n-1 disks…
 • We could also consider an average case scenario, but is harder…
 */

/*
 A statement that the computer can execute in one or a few (fixed number of) instructions, we count it as 1 step:
 O(1) = “order of one”

 This includes arithmetic, logical operations, assignments, but not necessarily function calls, recursive steps, etc.
 */

/*
 For example:
 // code with O(1) steps
 int i = 100;
 if ((i < n) && (n%2 == 0)) {
 i = i/n;
 } else {
 i = (i+1)/x*2;
 }
*/

/*
 Each of these statements is O(1).
 Thus the overall order of this piece of code is
 k * O(1) = O(1)
 where k is the number of individual statements
 */

for (int i = 0; i < n; i++) {
 counter++;
 // some sequence of O(1) steps
}

/*
 Need to determine how often a set of statements gets executed to determine the order of an algorithm
 To analyze loop execution, first determine the order of the body of the loop, and then multiply that by the number of times the loop will execute
*/

The loop executes n times, and the body of the loop is O(1).
Thus the overall order is O(n) * O(1) = O(n)
When loops are nested, we must multiply the complexity of the outer loop by the complexity of the inner loop.

```java
for (int i = 0; i < n; i++) {
    for (int j = 0; j < n; j++) {
        // some sequence of O(1) steps
    }
}
```

Both the inner and outer loops have complexity of O(n)

When multiplied together, the order becomes O(n^2)

What is the value of counter at the end of the shown code, written as a function of n?

n^2 (inner loop runs n*n times)

Determining the order of a recursive algorithm

- determine the order of the recursion (# of times recursive definition is followed) and multiply it by the order of the body of the recursive method.

Example: Consider the recursive method to compute the product of integers from 1 to some n > 1

```java
public int fact(int n) {
    int result;
    if (n == 1) {
        result = 1;
    } else {
        result = n * fact(n-1);
    }
    return result;
}
```

Size of the problem is n, the number of values to be multiplied

Operation of interest is the multiplication operation

The body of the method performs one multiplication and therefore is O(1)

Each time the recursive method is invoked, n is decreased by 1, thus...

...the recursive method is called n times

The order of the entire algorithm is O(n)

An algorithm’s time requirements can be measured as a function of the problem size n

- Growth rate enables the comparison between algorithms
 - Examples
 - **Searching** a sorted array requires time proportional to \(\lg n \)
 - **Searching** a list requires time proportional to \(n \)
 - **Selection sort** requires time proportional to \(n^2 \)
 - Notation: Big-Oh aka “order of”
 - **Searching** a sorted array requires time \(O(\lg n) \)
 - **Searching** a list requires time \(O(n) \)
 - **Selection sort** requires time \(O(n^2) \)

- Algorithm efficiency is typically a concern for large problems only (as \(n \) grows...)
Problem Size vs. Time

<table>
<thead>
<tr>
<th>Function</th>
<th>10</th>
<th>100</th>
<th>1,000</th>
<th>10,000</th>
<th>100,000</th>
<th>1,000,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\log n)</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>13</td>
<td>16</td>
<td>19</td>
</tr>
<tr>
<td>n</td>
<td>10</td>
<td>10¹</td>
<td>10²</td>
<td>10³</td>
<td>10⁴</td>
<td>10⁵</td>
</tr>
<tr>
<td>n (\times) (\log n)</td>
<td>30</td>
<td>964</td>
<td>9653</td>
<td>10³</td>
<td>10⁴</td>
<td>10⁵</td>
</tr>
<tr>
<td>(n^2)</td>
<td>(10^2)</td>
<td>(10^4)</td>
<td>(10^6)</td>
<td>(10^8)</td>
<td>(10^{10})</td>
<td>(10^{12})</td>
</tr>
<tr>
<td>(n^3)</td>
<td>(10^3)</td>
<td>(10^6)</td>
<td>(10^9)</td>
<td>(10^{12})</td>
<td>(10^{15})</td>
<td>(10^{18})</td>
</tr>
<tr>
<td>(2^n)</td>
<td>(10^3)</td>
<td>(10^8)</td>
<td>(10^{15})</td>
<td>(10^{24})</td>
<td>(10^{35})</td>
<td>(10^{48})</td>
</tr>
</tbody>
</table>

Definitions

- **Definition of the order of an algorithm**: Algorithm A is order \(f(n)\), denoted \(O(f(n))\), if constants \(k\) and \(n_0\) exist such that A requires no more than \(k \times f(n)\) time units to solve a problem of size \(n \geq n_0\).

- **Growth-rate function**: A mathematical function used to specify an algorithm’s order in terms of the size of the problem.

- **“Big-Oh” notation**: A notation that uses the capital letter O to specify an algorithm’s order.

 - Example: \(O(n)\), \(O(n^2 \log n)\), \(O(n^4)\), in general, \(O(f(n))\)

Order of growth of some common functions

\[O(1) < O(\log n) < O(n) < O(n \times \log n) < O(n^2) < O(n^3) < O(2^n) \]

Properties of growth-rate functions

- **Summing orders is dominated by the larger order**
 \[O(f(n)) + O(g(n)) = O(f(n) + g(n)) = O(\max\{f(n), g(n)\}) \]
 - Therefore you can ignore low-order terms
 \[O(n^2 + n) = O(n^2) \]

- **Multiplying orders means multiplying terms**
 \[O(f(n)) \times O(g(n)) = O(f(n) \times g(n)) \]
 - Therefore you can ignore multiplicative constants
 \[O(12n^2) = O(n^2) \]
/**
* Adds a CD to the collection of n CDs, increasing the
* size of the collection if necessary
*/
public void addCD(String title, String artist, double cost,
 int tracks) {
 if (count == collection.length)
 increaseSize();
 collection[count] = new CD(title, artist, cost, tracks);
 totalCost += cost;
 count++;
}

/**
* Increases the capacity of the collection by
* creating a larger array and copying
*/
private void increaseSize(){
 CD[] temp = new CD[collection.length * 2];
 for (int cd = 0; cd < collection.length; cd++)
 temp[cd] = collection[cd];
 collection = temp;
}

• An algorithm can require different times to solve different
 problems of the same size

 - **Worst-case analysis**
 • A determination of the **maximum** amount of time that an
 algorithm requires to solve problems of size n
 • Big-O uses worst-case analysis

 - **Average-case analysis**
 • A determination of the **average** amount of time that an
 algorithm requires to solve problems of size n

• Throughout the course of an analysis, keep in mind that you are
 interested only in **significant differences** in efficiency

• When choosing an ADT’s implementation, consider **how frequently**
 particular ADT operations occur in a given application

• Some seldom-used but **critical** operations must be efficient

• If the problem size is always small, you can probably ignore an
 algorithm’s efficiency

• Weigh the **trade-offs** between an algorithm’s time requirements
 and its memory requirements

• Compare algorithms for both style and efficiency

• Order-of-magnitude analysis focuses on large problems
* Both stacks and queues can be implemented very efficiently

* In almost all cases, the operations are not affected by the number of elements in the collection

* All operations for a stack (push, pop, peek, etc.) are O(1)

* Almost all operations for a queue are O(1)

* The only exception is the dequeue operation for the ArrayQueue implementation – the shifting of elements makes it O(n)

* The dequeue operation for the CircularArrayQueue is O(1) because of the ability to eliminate the shifting of elements