
// This program has at least 5 errors.
// Work with the person next2U to find them all!

public class Errors {

public static void main(String[] args)

String temperature = 80.3;

int n = 100

n = “Wait, what?”;

print(“This is fine.”);

}

1

This course will strive to create an inclusive learning environment in
which everyone feels like they belong in the class. The following
norms are designed to help us collectively reach that ideal. Please
make a good effort to live out these norms throughout the semester.

§ Listen with the possibility of being changed.
Speak with the promise of being heard.

§ Be present and be your best self.
§ Everyone has something to learn. No one person is good at

everything or has all the skills to complete a group-worthy task.
§ Everyone has expertise to offer. Every person has relevant

strengths to bring to each group-worthy task.
§ We need each and every person in this group.
§ You have the right to ask for help, and the duty to assist.
§ Be willing to experience discomfort.
§ Expect and accept non-closure.

2

Java Constructs
Variables and their Types

Assignments

Operators (relational, logical)

Conditionals, boolean expressions

Loops via iteration (while, for, do)

§ Code is executed sequentially
altering memory contents, e.g.

1. int x;
2. int y;
3. int z;
4. x = 7;
5. y = 5;
6. z = x + y;
7. System.out.println(z);

Line number Line 1 Line 2 Line 3 Line 4 Line 5 Line 6 Line 7
Memory model
of the current
state of the
program

Other actions Print
value of
z (12) to
screen

x (int) x (int)

y (int)

x (int)

y (int)

z (int)

7
x (int)

y (int)

z (int)

7
x (int)

5
y (int)

z (int)

7
x (int)

5
y (int)

12
z (int)

7
x (int)

5
y (int)

12
z (int)

5

Data may or may not be in memory, and this can affect execution

§ Variable declaration
§ int x;

§ Assignment statement (“gets”)
§ x = 5; double pi = 3.14;

§ Conditional statements
§ if (x == 5) {

x = x+1;
} //We don’t take fives!

§ Loops
§ while (x >= 5) {

x = x-1;
}

§ Functions (aka: Methods)
§ public static int increment(int x) {

return x+1; }

§ Java has a boolean type that can take the value true or false

§ boolean b = (x < 5); // parentheses are optional here

§ Booleans arise naturally when using relational operators to
compare two values

3 < 5

3 < 2

3 > 2

5 <= 1

5 >= 1

5 == 5

5 == 6

5 != 6

true

false

true

false

true

true

false

true

§ Boolean values can be manipulated with the logical
operators ! (not), && (and), and || (or)

! (3 < 5)

! (3 == 5)

(3 > 5) && (7 < 8)

(3 < 5) && (7 < 8)

(3 > 5) || (7 < 8)

(3 > 5) || (7 > 8)

false

true

false

true

true

false

§ A predicate is any method that returns a boolean value

//determine if n is even

public static boolean isEven(int n){

return (n % 2) == 0;

}

//determine if num is divisble by factor

public static boolean isDivisibleBy(int num, int factor) {

return (num % factor) == 0;

}

//determine if n is between lo and hi

public static boolean isBetween(double n, double lo, double hi)
{

return (lo <= n) && (n <= hi);

}

public static boolean isOdd(int n){

return (n%2) == 1;

}

Then, can you write it another way using another predicate?

public static boolean isOdd(int n){

return !isEven(n);

}

§ To control the program flow and choose between two courses
of action, we use conditional statements such as:
if, else if, and else

//returns absolute value of n

public static double abs(double n){

if (n < 0) {

return –n;

} else {

return n;

}

}

//returns absolute value of n (in a little surprising way)

public static double abs(double n){

if (n < 0) {

return –n;

}

return n;

}

public static void main(String[] args){

int x = __; String s = “meow”;

if(x < 30 && s.length() < 10){

x = x + 5;

int y = s.length();

if(x+y > 36){

System.out.println(“hello ” + x);

}else if(x+y < 33){

System.out.println(“howdy ” + y);

}else{

System.out.println(“hi!”);

}

} else {

x = x – 10;

int y = s.length() + 5;

if(x == 15) System.out.println(“Salut ” + x);

else System.out.println(”Ciao ” + y);

}

}

while
§ Iteration refers to a sequence of steps that is repeated

until some stopping condition is reached

while(boolean_expression){

statement 1;

statement 2;

…

}

…

(1) evaluate
boolean
expression

(2) if true,
execute body of
loop and go
back to step (1)

(3) if false, go
to statement
after the while int i = 1;

while (i < 4) {
System.out.println("CS230");
i = i + 1;

}

do
§ Iteration refers to a sequence of steps that is repeated

until some stopping condition is reached

do{

statement 1;

statement 2;

…

} while(boolean_expression)

…

(1) body of the
loop is executed

(3) if false, go to
the statement
after the do-while

(2) evaluate
boolean
expression.
if true, go
back to (1)

int i = 1;
do {

System.out.println("CS230");
i = i + 1;

} while (i < 4);

for

for (; ;) {

}
...

initialization
of index
variable

boolean
expr

update
index

variable

statements

Execute this statement
once before entering loop If true, execute body of

loop

Execute this statement before
next test of the boolean
expression

If the boolean expression was true,
the body of the loop will be
executed

If the boolean expression
evaluates to false,
drop down to here for (int i = 1; i < 4; i++) {

System.out.println("CS230");
}Write a for loop that prints the

numbers from 1 to 10.

for (int i=1; i<=10; i++) {
System.out.println(i);

}

Data Types in
Java

§ Java is a statically typed language
§ You must define the type of each variable when it is declared

§ Unlike Python, not all variables in Java are objects
§ Some are primitive data types (but have related objects)

Primitive Storage Range of values
int 32 bits -2,147,483,648 to 2,147,483,647

long 64 bits -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

float 32 bits Approx. –3.4E+38 to +3.4E+38
with 7 significant digits

double 64 bits Approx. –1.7E+308 to +1.7E308
with 15 significant digits

char 16 bits 65,535 Unicode characters
boolean 1 bit true or false

double num = 5.2;
num = 1.4;
num = num * 2.0;
System.out.println(num);

2.8

double fahrenheit = 98.6;
double celsius = (fahrenheit – 32) * 5 / 9;
System.out.println(celsius);

37.0

§ You should rarely use the equality operator (==) when
comparing two floating point values (float or
double)

§ Two floating point values are equal only if their underlying
binary representations match exactly

§ Computations often result in slight differences that may be
irrelevant

§ In many situations, you might consider two floating point
numbers to be “close enough” even if they aren't exactly
equal

Java Foundations, 5th Edition, Lewis/DePasquale/Chase 4 -
21

Using Objects
(and Strings in particular)

§ A class is like a house blueprint from which you can create
many of the "same" type of house
(maybe with different characteristics)

24

§ Generally, we use the new operator to create an object:

String title = new String(”Hello CS230!");

§ Creating an object is called instantiation

§ An object is an instance of a particular class

3 -
26

This calls the String constructor, which is
a special method that sets up the object

§ Because strings are so common, we don't have to use the
new operator to create a String object

title = "Java rocks!";

§ This is special syntax that works only for strings

§ Each string literal (enclosed in double quotes) represents a
String object

Java Foundations, 5th Edition, Lewis/DePasquale/Chase 3 -
27

§ Once an object has been instantiated,
we can use the dot operator to invoke its methods

int count = title.length()

String line = scan.nextLine();
//handy on the next assignment

§ A method may return a value, which can be used in an
assignment or an expression

§ A method invocation can be thought of as asking an object
to perform a service

3 -
28

Useful in getting
input from the user

3 -
30

§ While a primitive variable contains the value itself…
§ int num = 38;

§ An object variable contains the address of the object
§ String name = “Steve Jobs”

§ An object reference can be thought of as
a pointer to the location of the object

§ Rather than dealing with arbitrary addresses,
we often depict a reference graphically

3 -
31

"Steve Jobs"name

num 38

§ The act of assignment
takes a copy of a value and stores it in a variable

§ For primitive types:

Java Foundations, 5th Edition, Lewis/DePasquale/Chase 3 -
32

num1 38

num2 96
Before:

num2 = num1;

num1 38

num2 38
After:

§ For object references, only the address is copied (not the
value) :

Java Foundations, 5th Edition, Lewis/DePasquale/Chase 3 -
33

name2 = name1;

name1

name2
Before:

"Steve Jobs"

"Steve Wozniak"

name1

name2
After:

"Steve Jobs"

§ Two or more references that refer to the same object are
called aliases of each other

§ That creates an interesting situation: one object can be
accessed using multiple reference variables

§ Aliases can be useful, but should be managed carefully

§ Changing an object through one reference changes it for all
of its aliases, because there is really only one object

3 -
34

§ What do you think happens if you execute
name2 = “Wozniak”;

name1

name2
Given:

"Steve Jobs"

name1

name2
Result:

"Steve Jobs"

"Wozniak"

§ When an object no longer has any valid references to it, it
can no longer be accessed by the program

§ The object is useless, and therefore is called garbage

§ Java performs automatic garbage collection periodically,
returning an object's memory to the system for future use

§ In other languages, the programmer is responsible for
performing garbage collection explicitly

Java Foundations, 5th Edition, Lewis/DePasquale/Chase 3 -
36

§ Probably the most used class in Java

§ Once a String object has been created, neither its value
nor its length can be changed

§ Thus we say that an object of the String class is
immutable

§ However, several methods of the String class return
new String objects that are modified versions of the
original

Java Foundations, 5th Edition, Lewis/DePasquale/Chase 3 -
37

§ It is occasionally helpful to refer to a particular character
within a string

§ This can be done by specifying the character's numeric
index

§ The indexes begin at 0 in each string

§ In the string "Hello", the character 'H' is at index 0 and
the ‘e' is at index 1

§ What characters are located at:

§ “Hello”.charAt(0)

§ “Hello”.charAt(4)

3 -
38

§ Some methods of the
String class:

3 -
39

§ Strings in Java and Python are quite similar.
§ Like with Python, Java strings are immutable.

§ The difference is that to process Strings,
Java uses method calls where Python uses Operators.

Python Java Description
str[3] str.charAt(3) Return character in 3rd position
str[2:5] str.substring(2,4) Return substring from 2nd to 4th
len(str) str.length() Return the length of the string
str.find('x') str.indexOf('x') Find the first occurrence of x

str.split() str.split('\s') Split the string on whitespace into a
list/array of strings

str.split(',') str.split(',') Split the string at ',' into a list/array of
strings

str + str str.concat(str) Concatenate two strings together

str.strip() str.trim() Remove any whitespace at the beginning
or end

String s1 = new String("Grace Hopper");
String s2 = "CU L8R";
String s3 = ":)";

System.out.println(s1.toLowerCase());
grace hopper

System.out.println(s1.length());
12

System.out.println(s2.length());
6

System.out.println(s2.equals(s3));
false

System.out.println(s2.equals("CU L8R"));
true

System.out.println(s2.charAt(1));
U

System.out.println(s1.substring(7,11));
oppe

System.out.println(s2.substring(0,2).toLowerCase());

cu

// Returns true if character is lower-case
// vowel (a, e, i, o, u), false otherwise.

public static boolean isVowel(char ch){
return (ch == 'a') || (ch == 'e’)

|| (ch == 'i') || (ch == 'o’)
|| (ch == ‘u’)

}

// Returns the number of vowels in the String s

public static int countVowels(String s){

}

The Java API

§ A class library is a collection of classes that we can use
when developing programs

§ The Java API is the standard class library that is part of
any Java development environment

§ API stands for Application Programming Interface

§ Various classes we've already used (System ,
Scanner, String) are part of the Java API

§ Other class libraries can be obtained through third party
vendors, or you can create them yourself

Java Foundations, 5th Edition, Lewis/DePasquale/Chase 3 -
47

§ The classes of the Java
API are organized into
packages

Java Foundations, 5th Edition, Lewis/DePasquale/Chase 3 -
48

§ When you want to use a class from a package, you could
use its fully qualified name

java.util.Scanner

§ Or you can import the class, and then use just the class
name:

import java.util.Scanner;

§ To import all classes in a particular package, you can use
the * wildcard character:

import java.util.*;

Java Foundations, 5th Edition, Lewis/DePasquale/Chase 3 -
49

Java Foundations, 5th Edition, Lewis/DePasquale/Chase 3 -
50

§ All classes of the java.lang package are imported
automatically into all programs

§ It's as if all programs contain the following line

import java.lang.*;

§ That's why we didn't have to import the System or
String classes explicitly in earlier programs

§ The Scanner class, on the other hand, is part of the
java.util package, and therefore must be imported

Java Foundations, 5th Edition, Lewis/DePasquale/Chase 3 -
51

Two very useful
classes:
Math
Random

Math Class
System.out.println(Math.max(100, 50)); 100

System.out.println(Math.sqrt(25)); 5.0

System.out.println(Math.log(10)); 2.302585092994046

// Given area of circle, returns the circle's radius.
// Since area=pi*r*r, we have r = squareroot(area/pi).
public static double getCircleRadius(double area) {

return Math.sqrt(area/Math.PI);
}

System.out.println(getCircleRadius(100)); 5.641895835477563

http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html

Random Class

import java.util.Random;

public class RandomExample {

public static void main(String[] args) {

Random rand = new Random();
for (int i = 0; i < 15; i++) {

System.out.println(rand.nextInt(10));
}

}
}

http://docs.oracle.com/javase/7/docs/api/java/util/Random.html

