
Using Objects
Continued…

§ A variable holds either a primitive type or
a reference to an object

§ A class name can be used as a type
to declare an object reference variable

String title;
§ No object is created with this declaration

§ The object itself must be created separately

§ After its creation, an object reference variable holds the
address of an object stored in the main memory of the
computer

§ Before its creation, it holds null

Java Foundations, 5th Edition, Lewis/DePasquale/Chase 3 - 2

§ We've seen that once an object has been instantiated, we
can use the dot operator to invoke its methods

count = title.length()

§ A method may return a value, which can be used in an
assignment or expression

§ A method invocation can be thought of as asking an object
to perform a service

Java Foundations, 5th Edition, Lewis/DePasquale/Chase 3 - 3

§ The act of assignment takes a copy of a value and stores it
in a variable

§ For primitive types:

Java Foundations, 5th Edition, Lewis/DePasquale/Chase 3 - 4

num1 38

num2 96
Before:

num2 = num1;

num1 38

num2 38
After:

§ For object references, the address is copied:

Java Foundations, 5th Edition, Lewis/DePasquale/Chase 3 - 5

name2 = name1;

name1

name2
Before:

"Steve Jobs"

"Steve Wozniak"

name1

name2
After:

"Steve Jobs"

§ Two or more references that refer to the same object are
called aliases of each other

§ That creates an interesting situation: one object can be
accessed using multiple reference variables

§ Aliases can be useful, but should be managed carefully

§ Changing an object through one reference changes it for all
of its aliases, because there is really only one object

Java Foundations, 5th Edition, Lewis/DePasquale/Chase 3 - 6

Classes and
Objects
The heart of Object-Oriented Programming

(Now it gets interesting!)

§ The basic building block on an object-oriented language is
an object, simulating a real-life object

§ A class is like a blueprint from which you can create many
objects that may have different characteristics

5 - 8

§ An object has state, defined by the
values of its attributes
§ The attributes are defined by the data

associated with the object's class

§ An object has behaviors, defined by
the operations associated with it
§ Behaviors (operations) are

implemented by the methods of the
class

§ A class contains data declarations and method declarations

§ An object is an instantiation of a class

§ The values of the data are the object’s state
§ The functionality of the methods define the object’s behavior

int value
String name

Data declarations (“state”)

Method declarations (“behaviors”)

§ Generally, classes that represent
tangible things are called using
names that are singular nouns:
§ Examples: Coin, Student, Classroom

§ Generally, the methods that
encapsulate behaviors are called
using names that are verbs:
§ Examples: flip, register, assign, get,

set

§ What are the data and methods you
would define for class Coin?

String name
int classYear

What is the rule of thumb for finding classes?

Answer: Look for nouns in the problem description.

Your job is to write a program that plays chess. Might ChessBoard be an appropriate class?
How about MovePiece?

Answer: Yes (ChessBoard) and no (MovePiece).

C- 12

flip() {…}

isHeads() {…}

toString(){…}

int HEADS
int face

We have used System.out as a opaque box to cause output to appear on the
screen. Who designed and implemented System.out?

Answer: The programmers who designed and implemented the
Java library.

5 -
14

§ Consider a six-sided die (singular of dice)
§ What should its state be?

§ What should its primary behavior be?

§ We represent a die in Java by designing a class called Die
that models its state and behavior

§ We want to design the Die class with other data and methods
to make it a versatile and reusable resource

die1 3faceValue

die2 4faceValue

§ Enforces access to an object’s data only through specific
methods – PROTECTS the class implementation

§ A well encapsulated object can be thought of as
a non-transparent box - the inner workings are hidden from
whomever is using it (the client)

§ The client invokes the interface methods of the object,
which manages the instance data

Methods

Data

Client

§ A modifier specifies particular characteristics of a
method or data

§ Java has three visibility modifiers:
public, protected, and private

public private

Variables
violates

encapsulation
enforces

encapsulation

Methods
provides

services to
clients

supports other
methods in

class

§ Consider a six-sided die (singular of dice)
§ Its state can be defined as which face is showing

§ Its primary behavior is that it can be rolled

§ We can represent a die in Java by designing a class called
Die that models this state and behavior

§ We want to design the Die class with other data and methods
to make it a versatile and reusable resource

§ Let’s see how we would use Die to play snakeEyes,
that is, write a client for Die

die1 1faceValue

die2 1faceValue

public class SnakeEyes { public static void main(String[] args) {

final int ROLLS = 500;

int num1, num2, count = 0;

// Instantiate two new Die objects

Die die1 = new Die();

Die die2 = new Die();

for(int roll = 1; roll <=ROLLS; roll++) {

//Roll die, save each faceValue into num1 and num2

num1 = die1.roll();

num2 = die2.roll();

//Check for snake eyes

if(num1 == 1 && num2 == 1) count++;

}

System.out.println(“Number of rolls: “ + ROLLS);

System.out.println(“Number of snake eyes “ + count);

System.out.println(“Ratio: ” + (float)count/ROLLS);
}}

§ A constructor is a special method which builds a new
instance of the class

§ Note that a constructor has no return type in the method
header, not even void

§ A common error is to put a return type on a constructor,
which makes it a “regular” method that happens to have
the same name as the class

§ The programmer does not have to define a constructor for a
class:

§ Each class has a default constructor that accepts no
parameters

import java.util.Random;
/**
* Represents one die with faces between 1 and 6
* @author Java Foundations
*/

public class Die {
private final int MAX = 6; //max face value
private int faceValue; //current value showing

public Die(){ // Constructor! Sets initial value.
faceValue = 1;

}
/**
* Computes a new face value for this die
* @return the new face value between 1 and MAX
*/

public int roll(){
Random r = new Random();
faceValue = r.nextInt(MAX) + 1;
return faceValue;

}

/**
* Face value mutator. Only modified if value is valid
* @param value die is set to this integer, 1 to MAX
*/
public void setFaceValue(int value){

if (value > 0 && value <= MAX) faceValue = value;
}

/**
* Face value accessor.
* @return the current face value of this die
*/
public int getFaceValue() {

return faceValue;
}

/**
* @return string representation of this die
*/
public String toString() {

String result = Integer.toString(faceValue);
return result;

}
}

§ A UML class diagram showing the classes involved in the
SnakeEyes program:

5 -
23

java.util.Random

§ Not all data types in Java are objects
§ Some are primitive data types (but have related objects)
§ All primitive data types have a corresponding Wrapper Class

Primitive Object
int Integer

long Long
float Float

double Double
char Char

boolean Boolean

Control Flow
The order in which programs are executed.

It all starts with the main() method…

§Understanding the control flow is
essential to debugging!

Die() rollmain
class SnakeEyes class Die

die.roll()

die = new Die();

§ If the called method is in the same class, only the method name is
needed

§ If the called method is part of another class, use the dot notation

§ Understanding the control flow is essential to debugging!

doThis helpMe

helpMe();obj.doThis();

main

Static VARIABLES
vs Instance
VARIABLES
It can be confusing…

A static variable belongs to the class, not to any object of the
class.

To assign bank account numbers sequentially
Have a single value of lastAssignedNumber that is a property of the
class, not any object of the class.

Declare it using the static reserved word
public class BankAccount
{

private double balance;
private int accountNumber;
private static int lastAssignedNumber = 1000;

public BankAccount()
{

lastAssignedNumber++;
accountNumber = lastAssignedNumber;

}
. . .

}

Every BankAccount object has its own balance and
accountNumber instance variables
All objects share a single copy of the lastAssignedNumber
variable

That variable is stored in a separate location, outside any BankAccount
objects

Static variables should always be declared as private,
This ensures that methods of other classes do not change their values

static constants may be either private or public
public class BankAccount
{

public static final double OVERDRAFT_FEE = 29.95;
. . .

}

Methods from any class can refer to the constant as
BankAccount.OVERDRAFT_FEE.

Figure 5 A Static Variable and Instance Variables

Static methods vs
Instance methods
It can be confusing…

Sometimes a class defines methods that are not invoked on an
object. Called a static method

Example: sqrt method of Math class
if x is a number, then the call x.sqrt() is not legal
Math class provides a static method: invoked as Math.sqrt(x)
No object of the Math class is constructed.

The Math qualifier simply tells the compiler where to find the sqrt
method.

When calling such a method, supply the name of the class
containing it:
double tax = Financial.percentOf(taxRate, total);

The main method is always static.
When the program starts, there aren’t any objects.
Therefore, the first method of a program must be a static method.

Programming Tip: Minimize the Use of Static Methods

Suppose we execute the following main() method:

C- 34

// Main method… the Bronte sisters’ grades in CS230
public static void main(String[] args) {
Grade charlotte = new Grade(“B-”, 82.1);
Grade emily = new Grade(“A”, 94.5);
Grade anne = new Grade(“C+”, 79.0);

System.out.println(charlotte.isHigherThan(emily));

System.out.println(Grade.max(charlotte,emily));
}

We need to write a Grade class that contains (at least) a
constructor, and a few of methods.
You may think that isHigherThan and max do essentially
the same thing (a comparison of scores) but they are defined
differently:

C- 35

// Constructor creating a Grade represented with
// a letter and a number
public Grade(String letterGrade, double numericalGrade)

// Compares this Grade’s score to another Grade g and
// returns true if this Grade is higher than Grade g
public boolean isHigherThan(Grade g)

// Compares the scores of two grades and
// returns the maximum of the two Grade objects
public static Grade max(Grade g1, Grade g2)

Reusing Classes
The power of Object-Oriented Programming

C- 37

C- 38

C- 39

