Meelection at the end -add
' Ob.select= 1
#er_ob.select=1
ntext.scene.objects.actiw o
W "Selected” + str(modifier N

Polymorphism

nt("“please

Inheritance prowvides:zPoweér to OOP

Polymorphism provides flexibility through
inheritance



Arrays of Shapes?

= Last time we saw the Shapes hierarchy and
how to create a hierarchy of classes in order to reuse code.

= What if you want to create a collection of Shapes?

= All values in a particular array must have the same type

or be of compatible types!

Can an array of Shape
contain circles, triangles,

«abstract»

Shape

TR

and rectangles? Circle

Triangle

Rectangle

Yes! Due to polymorphism.

|

Square




Polymorphism via Inheritance

Rectangle myShape = new Rectangle() ;
myShape.calculateArea() ;

Square perfect = new Square();

myShape = perfect;

Class Rectangle
has a method called calculateArea(),
and the child class square overrides it

Now consider the following invocation

myShape. calculateArea() ;
Which calculateArea() is invoked?

If myShape refers to a Rectangle object,
it invokes the Rectangle version of
calculateArea()

If myShape refers to a square object,
it invokes the sSquare version of
calculateArea()!

myShape.

calculatelArea() ;

Rectangle

+calculateArea()

PAN

Square

+ calculateArea()




Static and Dynamic Binding

Rectangle
Consider the following method invocation: J

myShape. calculateArea() ;

+calculateArea()

At some point, this invocation is bound VAN
to the definition of the method that it invokes

If this binding occurred statically at compile time, Square

then that line of code
would call the same method every time

(That’s not happening in Java) + calculateArea()

Java defers method binding until run time:
this is called dynamic binding or late binding

Dynamic binding provides flexibility in program design

@

F-



Polymorphism:

" Ve
having many forms

= A polymorphic reference is a variable that can refer to
different types of objects at different points in time

= Suppose we create the following reference variable

Rectangle myShape;

= Java allows this reference to point
to a Rectangle object, or
to any object of any compatible type!

Rectangle

JAN

Square

= This compatibility can be established using inheritance

or using interfaces



References and

Assigning a child object to a
parent reference is
considered to be a
widening conversion, and
can be performed by simple
assignment

Assigning a parent object to
a child reference can be
done also, but it is
considered a narrowing
conversion and must be
done with a cast

The widening conversion is
the most useful

inheritance

Rectangle wide =
new Square() ;

Square narrow =

(Square) new Rectangle() ;

Rectangle

AN

Square




Phism

Ssc
f"Selected™ + str(modi
irror jo@elect = 0

®
c. X e b jou
I n a .ta.o e ﬂ"
grint("please s€lect &X L

Think of a companyothatheeds to keep
information about its personnel (a collection)

Personnel can be volunteers, 3x.9cutives, and
employees pait;'fg}?ﬁﬁﬂﬂ?edﬂﬂourly

— mirror_™ rror_
Let’s write @ﬁ;é'ram that goes through the
collection of personnel and paysithem all

- -act 15
: o::eﬁzive/"b 3°4
pRex-r



QO ~J O N DN

—r P s ks s p—
N W N = DO
—

® ®
Firm.java
/**
* Demonstrates polymorphism via inheritance.
* @author Java Foundations
*/
public class Firm {
/**
* Creates a staff of employees for a firm and pays them.
*/
public static void main (String[] args) {
Staff personnel = new Staff();

personnel.payday(); *
} e

staff #name : Strini
-staffList : StaffMember [<>— #address : String
#phone : Stri

+payday( : void

~bonus : double ~hoursWorked : int

+pay( : doubl

+awardBonus(execBonus : double) : void +addHours(moreHours : int) : void
: double :




Exploring the benefits and flexibility of polymorphism

Firm

+mainfargs : String[)) : void

|

Staff

~-stafflList : StaffMember

+payday( : void

A Program that pays
various types of employees
using a polymorphic
method

StaffMember

#name : String

K _>— #add

#phone : String

ress : String

+toString() : String
+pay( : double

|

Volunteer

Employee

+pay() : double

#socialSecutiryNumber : String
#payRate : double

+toString() : String
+pay( : double

AN AN
Executive Hourly
~-bonus : double ~hoursWorked : int
+awardBonus{execBonus : double) : void +addHours{moreHours : int) : void
+pay( : double +pay() : double
+toString() : String




~ Staft.java

* Represents the personnel staff of a particular business.
* @author Java Foundations
*/
public class Staff {
private StaffMember[] stafflList;

/**
* Constructor: Sets up the list of staff members.
*/
public Staff () {
staffList = new StaffMember[t];

staffList[@] = new Executive ("Tony", "123 Main Line", "555-@469", "123-45-6789", 2423.07),
staffList[1] = new Employee ("Paulie", "456 Off Line", "555-0101", "987-65-4321", 1246.15);
staffList[2] = new Employee ("Vito", "789 Off Rocker", "555-0000", "010-20-3040", 1169.23);
staffList[3] = new Hourly ("Michael”, "678 Fifth Ave.", "555-0690", "958-47-3625", 10.55);
staffList[4] = new Volunteer (“"Adrianna"”, "987 Babe Blvd.", "555-8374");

staffList[5] = new Volunteer ("Benny", "321 Dud Lane", "555-7282");

((Executive)staffList[¢]).awardBonus (500.00); i

((Hourly)staffList[3]).addHours (40);




Staff.java

25

26 / * ok

27 * Pays all staff

28 */

29 public void payday () {

30 double amount;

31

32 for (int count=0; count < stafflist.length; count++) {

33 System.out.println (staffList[count]);

34

35 amount = staffList[count].pay(); // polymorphic

36

37 1f Camount == 0.0)

38 System.out.println ("Thanks!");

30 else

40 System.out.println ("Paid: " + amount);

41 =

42 System.out.println (V-=--cccccmmmmc e S );

oo e

14 s
T 1

45 1 =] ==

uuuuuuuuuuuu




StaffMember.java

/**

*

abs

L R B UL g B GO I

| S T N T N T N T e e e e S S S i S
LR = 0 O O -Jh N 5 W= O

)

Represents a generic staff member

* @author Java Foundations
*/

tract public class StaffMember {
protected String name;

protected String address;
protected String phone;

/**
* Constructor: Sets up this staff member using the specified information.
*/

public StaffMember (String eName, String eAddress, String ePhone) {

name = eName;
address = eAddress;
phone = ePhone;
}
/ * * am(args-s\«lingn void
* Derived classes must define the pay method for each type==
* / -
public abstract double pay(); ] e

vvvvvvv
oooooooooo

Executive

nnnnnnnnnnnn

For toString() see the book ...




Lo R B UL g B G A I

L T e T T S S S S S
WO - N N = DO

Volunteer.java

Employee

/**
* Represents a staff member that works as a volunteer.
* @author Java Foundations
o'
public class Volunteer extends StaffMember {
/**
* Constructor: Sets up this volunteer using the specified information.
o
public Volunteer (String eName, String eAddress, String ePhone) {
super (eName, eAddress, ePhone);
}
/**
* @return a zero pay value for this volunteer.
ot
public double pay() { =
return 9.9; =T _
} -

mmmmmmmmmmmm

Executive

uuuuuuuuuuuu




Q0 =J O N p P

[ T N T N T S T S T S T e e e e e e e e e
[ 5 IR CNR ' O N I ncw B e Y o w TN I o Y o 3 [ N P T AN T v Y

)
'

/*’k

* @author Java Foundations
*/
public class Employee extends StaffMember {
protected String socialSecurityNumber;
protected double payRate;

/**

* Constructor: Sets up this employee with the specified information.

*/

®
* Represents a general paid employee. EmpIOyee.jCIVd

public Employee (String eName, String eAddress, String ePhone,

String socSecNumber, double rate) {
super (eName, eAddress, ePhone);

socialSecurityNumber = socSecNumber;
payRate = rate;
}

/**
* @return the pay rate for this employee.
*/
public double pay() {
return payRate;

}

uuuuuuuuuuuu




1 /**

2 * Represents an executive staff member, who can earn a bonus.

3 * @author Java Foundations ® ®
1 | Executive.java
5 public class Executive extends Employee {

6 private double bonus;

-

8 /**

g * Constructor: Sets up this executive with the specified information
18 */

11 public Executive (String eName, String eAddress, String ePhone,

12 String socSecNumber, double rate) {

13 super (eName, eAddress, ePhone, socSecNumber, rate);

14 bonus = @; // bonus has yet to be awarded

15 }

16

1? /**

18 * Computes and returns the pay for an executive, which is the

19 * regular employee payment plus a one-time bonus.
20 W
21 public double pay() { e —
29 double payment = super.pay() + bonus; | =
23 T [
24 bonus = @;
25
26 return payment;

}

(]
-]




Q0 = O N DN

[ T o T o T O T o T S T S T S e e e S S S S A S S =
[ L o [ CNR T Y AN e ncow RN e TN N e R A SN CNRY T B AN B aow Y

/**
* Represents an employee that gets paid by the hour.
* @author Java Foundations
* / o
public class Hourly extends Employee { HOU”Y.]QVG

private int hoursWorked;

/**
* Constructor: Sets up this hourly employee using the specified information.
*/
public Hourly (String eName, String eAddress, String ePhone,
String socSecNumber, double rate) {
super (eName, eAddress, ePhone, socSecNumber, rate);

hoursWorked = 0;
}
/**
* Computes and returns the pay for this hourly employee.
*/

public double pay() {
double payment = payRate * hoursWorked;

hoursWorked = 0;

return payment;

}




