
Polymorphism
Inheritance provides Power to OOP

Polymorphism provides flexibility through
inheritance

§ Last time we saw the Shapes hierarchy and
how to create a hierarchy of classes in order to reuse code.

§ What if you want to create a collection of Shapes?

§ All values in a particular array must have the same type
or be of compatible types!

Can an array of Shape
contain circles, triangles,
and rectangles?

Yes! Due to polymorphism.

Class Rectangle
has a method called calculateArea(),
and the child class Square overrides it

Now consider the following invocation

myShape. calculateArea();
Which calculateArea() is invoked?

If myShape refers to a Rectangle object,
it invokes the Rectangle version of
calculateArea()

If myShape refers to a Square object,
it invokes the Square version of
calculateArea()!

F- 3

Rectangle

Square

…
+calculateArea()

…
+ calculateArea()

Rectangle myShape = new Rectangle();
myShape.calculateArea();
Square perfect = new Square();
myShape = perfect;
myShape. calculateArea();

§ Consider the following method invocation:
myShape. calculateArea();

§ At some point, this invocation is bound
to the definition of the method that it invokes

§ If this binding occurred statically at compile time,
then that line of code
would call the same method every time
(That’s not happening in Java)

§ Java defers method binding until run time:
this is called dynamic binding or late binding

§ Dynamic binding provides flexibility in program design

F- 4

Rectangle

Square

…
+calculateArea()

…
+ calculateArea()

§ A polymorphic reference is a variable that can refer to
different types of objects at different points in time

§ Suppose we create the following reference variable

Rectangle myShape;

§ Java allows this reference to point
to a Rectangle object, or
to any object of any compatible type!

§ This compatibility can be established using inheritance
or using interfaces

F- 5

Rectangle

Square

…

…

§ Assigning a child object to a
parent reference is
considered to be a
widening conversion, and
can be performed by simple
assignment

§ Assigning a parent object to
a child reference can be
done also, but it is
considered a narrowing
conversion and must be
done with a cast

§ The widening conversion is
the most useful

9 - 6

Rectangle

Square

…

…

Rectangle wide =
new Square();

Square narrow =
(Square) new Rectangle();

Example of
Polymorphism
in action
Think of a company that needs to keep
information about its personnel (a collection)

Personnel can be volunteers, executives, and
employees paid monthly or hourly

Let’s write a program that goes through the
collection of personnel and pays them all

F- 8

9

A Program that pays
various types of employees
using a polymorphic
method

Exploring the benefits and flexibility of polymorphism

F- 10

F- 11

F- 12For toString() see the book …

F- 13

F- 14

F- 15

F- 16

