
Interfaces
Classes comprised exclusively of
Abstract methods and constants

Polymorphism provides flexibility to interfaces

§ It is a class containing methods without implementation!
§ Like an Abstract class on steroids!

//A class that a software
designer wants implemented
public interface Doable {

public void doThis();
public int doThat(int num);
public boolean doTheOther();

}

Think of it as a contract
between
the designer of a class
and an implementor

An interface make it possible for a service to be available to a wide set of classes

§ A Java interface is composed of a collection of abstract
methods and constants

public interface Doable {
public void doThis();
public int doThat(int num);
public boolean doTheOther ();

}

None of the methods in
an interface are given

a definition (body)

A semicolon immediately
follows each method header

Since all methods in an interface are abstract,
the keyword abstract is left off

interface
is a reserved word

F- 4

// coders can implement this file
// without bothering Clients
public class CanDo implements Doable
{

public void doThis ()
{

// code to do this
}

public void doThat (int num)
{

// code to do that
}

public boolean doTheOther ()
{
// whatever
}

}

// Clients can use this file
// without seeing the code
public interface Doable {

public void doThis();
public int doThat(int num);
public boolean doTheOther();

}

F- 5

// A class that a software designer wants implemented
// She wants clients to be able to use without seeing the code
// (they should just see only the INTERFACE to the class)
// She wants coders to update without messing up clients
// (coders should have freedom on how to IMPLEMENT it best)
public class Doable
{

public void doThis ()
{

// code to do this
}

public void doThat (int num)
{

// code to do that
}

public boolean doTheOther ()
{

// whatever
}

}

§ Why may an interface not be
instantiated?

§ Why are interface methods
public by default?

§ Why must a class
implementing an interface,
define all methods in the
interface?

§ Why may a class implementing
an interface also implement
other methods?

F- 6

public class CanDo implements Doable
{

public void doThis ()
{

// code to do this
}

public void doThat (int num)
{

// code to do that
}

public boolean doTheOther ()
{
// whatever
}

}

implements
is also reserved word

Each
method
listed

in
Doable

is
given a

definition

§ An interface name can be used
as the type of an object reference variable

Speaker current;

§ The current reference can be used
to point to any object of any class
that implements the Speaker interface

§ The version of speak that the following line invokes
depends on the type of object that current is referencing

current.speak();

F- 8

<<interface>>
Speaker

Philosopher

+speak()

§ Suppose two classes, Philosopher and Politician,
both implement the Speaker interface,
providing distinct versions of the speak method

§ In the following code, the first call to speak invokes one
version and the second invokes another

Speaker guest = new Philospher();
guest.speak();

guest = new Politician();
guest.speak();

F- 9

<<interface>>
Speaker

Politician

+speak()

Philosopher

+speak()

§ A class can implement multiple interfaces

§ The interfaces are listed in the implements clause

§ The class must implement all methods in all interfaces listed
in the header

F- 10

class Horse implements Mammal, Toy {

// all methods of both interfaces

}

Mammal

Horse

Toy

The Comparable
and The Iterable
Interfaces
Famous Java-defined interfaces

§ The Java standard class library has many helpful
interfaces

§ The Comparable interface contains
one abstract method called compareTo,
which is used to compare two objects

§ The String class implements Comparable,
giving us the ability to put strings
in lexicographic order

F- 12

Comparable

String

§ Any class can implement Comparable to provide a mechanism
for comparing objects of that type

F- 13

if (obj1.compareTo(obj2) < 0)

System.out.println ("obj1 is less than obj2");

• It’s up to the programmer to determine what makes one
object < than another

• You may define the compareTo method of an Employee
class to order employees by name (alphabetically) or by
employee number

• The implementation of the method can be as
straightforward or as complex as needed for the situation

§ The String class contains a method called compareTo to
determine if one string comes before another

§ A call to name1.compareTo(name2)

§ returns 0 if name1 and name2 are equal (contain the
same characters)

§ returns a negative value if name1 is less than name2

§ returns a positive value if name1 is greater than name2

A-1 14

if (name1.compareTo(name2) < 0)
System.out.println (name1 + "comes first");

else
if (name1.compareTo(name2) == 0)

System.out.println ("Same name");
else

System.out.println (name2 + "comes first");

§ An iterator is an object that provides a means of
processing a collection of objects, one at a time

§ It is created formally by implementing the Iterator interface’s 3 methods
§ The hasNext method returns a boolean – true if there are items left to process
§ The next method returns the next object in the iteration
§ The remove method removes the object most recently returned by the next

method

§ By implementing the Iterator interface, a class formally establishes that objects of that type
are iterators

§ Once established, the for-each version of the for loop can be used to process the items in the
iterator

F- 16

Scanner

Iterator

