Meelection at the end -add
' Ob.select= 1
#er_ob.select=1
‘.ltext scene.objects.activgé
W "Selected” + str(modifier 8

- _ob.select = 0

t .

I nt sanes
(" lease select €

Classes compris g;é;l sively-of
Abstract me hod%g':as génstas;lts

Polymorphism prov1des i;lex1b111ty to interfaces

select

What is an Interface?

= It is a class containing methods without implementation!
= Like an Abstract class on steroids!

//A class that a software

designer wants implemented Think of it as a contract
public interface Doable ({ between
public void doThis () ; the designer of a class
public int doThat (int num) ; and an implementor

public boolean doTheOther ()

An interface make it possible for a service to be available to a wide set of classes

@

What is an Interface?

= A Java interface is composed of a collection of abstract
methods and constants

interface
is a reserved word Since all methods in an interface are abstract,

\ / the keyword abstract is left off

public interface Doable {

public void doThis () ; None of the methods in
public int doThat (int num) ; an interface are given
public boolean doTheOther (); a definition (body)

| /
A semicolon immediately
follows each method header

Implementing
Interfaces

// coders can implement this file
// without bothering Clients
public class CanDo implements Doable

// Clients can use this file {
// without seeing the code public void doThis ()
public interface Doable ({ {
public void doThis () ; // code to do this
public int doThat (int num) ; I

public boolean doTheOther () ; public void doThat (int num)

{
// code to do that

}

public boolean doTheOther ()
{

// whatever

}

Why we need Interfaces?

// A class that a software designer wants implemented
// She wants clients to be able to use without seeing the code
// (they should just see only the INTERFACE to the class)
// She wants coders to update without messing up clients
// (coders should have freedom on how to IMPLEMENT it best)
public class Doable
{

public void doThis ()

{

// code to do this

}

public void doThat (int num)

{
// code to do that

}

public boolean doTheOther ()
{

// whatever

}

Why may an interface not be
instantiated?

Implementing
Interfaces

implements
is also reserved word

/ Why are interface methods
public by default?

public class CanDo implements Doable

{

public void doThis () N
{

// code to do this = Why must a class
} implementing an interface,

Each define all methods in the

public void doThat (int num) method interface?
{ listed

// code to do that =~ in
} Doable

1s

public boolean doTheOther () given a * Why may a class implementing
{ definition = an interface also implement
// whatever other methods?
}

| : ®

F-

public class CDCollection implements Collection

{
private CD[] collection;

[**

* Used as an example for Java Interfaces.

*

* @author Takis

* @version 2020.09.10

*/
public interface Collection<T>
{

// Adds the specified element to the collection.
public void add (T element);

// Returns true if & only if the box contains no elements [ation
public boolean isEmpty();

// Returns the number of elements in the collection.
public int size(); pentation

// Returns a string representation of the collection.
public String toString();

Polymorphism via Interfaces

An interface name can be used
as the type of an object reference variable

Speaker current;

The current reference can be used
to point to any object of any class
that implements the Speaker interface

<<interface>>
Speaker

A

Philosopher

+speak()

The version of speak that the following line invokes
depends on the type of object that current is referencing

current.speak() ;

Polymorphism via Interfaces

Suppose two classes, Philosopher and Politician,
both implement the Speaker interface,
providing distinct versions of the speak method

In the following code, the first call to speak invokes one
version and the second invokes another
Speaker guest = new Philospher() ;

guest.speak () ;

guest = new Politician();
<<interface>>

guest.speak() ; Speaker A—
Philosopher Politician
+speak() +speak()

~®

Multiple Interfaces

= A class can implement multiple interfaces

= The interfaces are listed in the implements clause

= The class must implement all methods in all interfaces listed

in the header

class Horse implements Mammal, Toy {

// all methods of both interfaces

Mammal

Toy

Horse

ble

True

anéﬁﬂzaae;:lferq o[z

W "Selected”™ + str(modifier 0

Interfaces

print("please

Famous Java-defined interfaces

Java Interfaces: Comparable

= The Java standard class library has many helpful
interfaces

java.lang

Interface Comparable<T>

Method Summary

int |compareTo(T o)
Compares this object with the specified object for order.

= The Comparable interface contains
one abstract method called compareTo,
which is used to compare two objects

Comparable

= The String class implements Comparable, A

giving us the ability to put strings ;
in lexicographic order :
String @

The Comparable Interface

Any class can implement Comparable to provide a mechanism
for comparing objects of that type

if (objl.compareTo (obj2) < 0)
System.out.println ("objl is less than obj2");

* It’s up to the programmer to determine what makes one
object < than another

* You may define the compareTo method of an Employee
class to order employees by name (alphabetically) or by
employee number

* The implementation of the method can be as
straightforward or as complex as needed for the situation

@

F-

String implements Comparable

The String class contains a method called compareTo to
determine if one string comes before another

A call to namel.compareTo (name?2)

returns O if namel and name?2 are equal (contain the
same characters)

returns a negative value if namel is less than name?2

returns a positive value if namel is greater than name?2

if (namel.compareTo (name2) < 0)
System.out.println (namel + "comes first") ;
else

if (namel.compareTo (name2) == 0)
System.out.println ("Same name") ;
else

Al System.out.println (name2 + "comes first"); @Z§

Shape implements Comparable

[**
Method final compareTo()

Compares the invoking and the input shapes by area

@param otherShape Shape to be compared to this shape

@return int 0 if the two shapes have the same area,

1 if the invoking shape's area is greatet

-1 if the invoking shape's area is smaller

* ok ok ok ok * *

*/
final public int compareTo(Shape other) {

if ((Math.abs(this.calculateArea() - other.calculateAréa())) <= minDiff)
return 0;

if (this.calculateArea() - other.calculateArea() > minDiff)
return 1;

return -1;

lterator

The Iterator Interface ?

= An iterator is an object that provides a means of
processing a collection of objects, one at a time

= It is created formally by implementing the Iterator interface’s 3 methods
= The hasNext method returns a boolean — true if there are items left to process
= The next method returns the next object in the iteration

= The ﬁ'el(‘ilove method removes the object most recently returned by the next
metho

Scanner

java.util

Interface Iterator<gE>

Method Summary

boolean |hasNext ()

Returns true if the iteration has more elements.

o}

next ()
Returns the next element in the iteration.
void | remove()

Removes from the underlying collection the last element
returned by the iterator (optional operation).

= By implementing the Iterator interface, a class formally establishes that objects of that type
are iterators

= Once established, the for-each version of the for loop can be used to process the items in @
iterator |

F-

