
Exceptions and
I/O (input-output)
Exceptions: What to do when things go bad.

I/O: Where things often go bad

§ You have been coding for a while and you may have
encountered some exceptions. Here are some of them:
§ Division by 0 in computing expression (ArithmeticException)

§ Array index out of bounds (IndexOutOfBoundsException)

§ Null pointer cannot be followed (NullPointerException)

§ Generic I/O problems (e.g., no space on disk to save file, file
not found, etc) (IOException)

§ No permissions to save a file on the disk
(FileNotFoundException)

§ An exception is an object describing unusual or erroneous
situation

§ (An error is also an object, but it represents a unrecoverable
situation and should not be caught)

§ Exceptions are thrown by a
program, and may be caught
and handled by another part
of the program

§ To handle an exception, the
line that throws the exception
is executed within a try block

§ A try block is followed by one
or more catch clauses

§ When an exception occurs,
processing continues
at the first catch clause that
matches the exception type

1-7

// here is code that
// should generate no exceptions
try {

// code to monitor
// several possible things
// that can go wrong
// goes here

}
catch (ExceptionTypeA ex) {

//handler for ExceptionTypeA
}
catch (ExceptionTypeB ex) {

//handler for ExceptionTypeB
}
// after a catch, continue here

try
{

zone = code.charAt(9);
district = Integer.parseInt(code.substring(3, 7));
valid++;
if (zone == 'R' && district > 2000) banned++;

}
catch (StringIndexOutOfBoundsException exception)
{

System.out.println ("Improper code length: " + code);
}
catch (NumberFormatException exception)
{

System.out.println ("District is not numeric: " + code);
}

// Counts the number of product codes that are entered
// with a zone of R and district greater than 2000.

D I S T Z

The throws clause
Everyone knows that
I/O is unpredictable and
can throw an exception.

The compiler will insist
that you either catch it
or acknowledge this fact
(and take responsibility).

§ A checked exception
requires explicit handling.
It must
§ be caught by a method,

(using try-catch block)

or

§ be asserted in the throws
clause of any method
that may throw or propagate it

§ The compiler will issue error
if a checked exception
is not caught or asserted
in a throws clause

1-12

• An unchecked exception
does not require explicit
handling
(but try to catch)

• The only unchecked Java
exceptions are objects of type
RuntimeException
(or any of its descendants)

• Errors are similar to RuntimeException
and its descendants
in the sense that

• Errors cannot be caught

• Errors do not require a throws clause

I/O with Scanner
and PrintWriter
Great Resource!

Learn and Reuse!

/* Read in lines of text from the keyboard,

* and print out each line after it is read in.

* Stop when the user hits CONTROL-D.

*/

public static void displayKeyboardInput () {

// will not throw

Scanner keyboardScan = new Scanner (System.in);

do {

String line = keyboardScan.nextLine();

System.out.println(line);

} while (keyboardScan.hasNext());

keyboardScan.close();

}

Replace this as you wish

/* Read in the contents of a file line by line,

* and print out each line after it is read in.

* Stop when the end of the file is reached.

*/

public static void displayFile (String inFileName) {

try {

Scanner fileScan = new Scanner (new File(inFileName));

while (fileScan.hasNext()) {

String line = fileScan.nextLine();

System.out.println(line);

}

fileScan.close();

} catch (IOException ex) {

System.out.println(ex);

}

}

Replace this as you wish

/* Read in the contents of a web page line by line,

* and print out each line after it is read in.

* Stop when the end of the web page is reached.

*/

public static void displayWebPage (String urlName) {

try {

URL u = new URL(urlName);

Scanner urlScan = new Scanner(u.openStream());

while (urlScan.hasNext()) {

String line = urlScan.nextLine();

System.out.println(line);

}

urlScan.close();

} catch (IOException ex) {

System.out.println(ex);

}

}

Replace this as you wish

/* Copies an input file to an output file. Displays an
* error message if the output file cannot be created.

*/
public static void copyFile(String inFileName,

String outFileName){
try{

Scanner reader = new Scanner (new File(inFileName));
PrintWriter writer = new PrintWriter (new File(outFileName));

while (reader.hasNext()) {
String input = reader.nextLine());

writer.println(input);
}

writer.close();
reader.close();

}catch (IOException ex) {
System.out.println(ex); // Handle file-not-found

}
}

Replace this as you wish

Exercise: Counting
Characters and
Lines

Write a method that
takes the name of a file as input and
prints out the number of characters in the file and
the number of lines in the file.

public static void countCharsAndLines(String filename) {

}

