Efficiency of Algorithms

(Some solutions are better than others!)

How long does it take to...
...to see if three side lengths form a triangle?

```java
public static boolean isTriangle(double a, double b, double c) {
    boolean case1, case2, case3, all3;
    case1 = a + b > c;
    case2 = b + c > a;
    case3 = c + a > b;
    all3 = case1 && case2 && case3;
    return all3;
}
```
It takes just a few basic computational steps

Each step takes just a few microseconds, a few basic steps:
- True for arithmetic operations
- Also true for logical operations
- Also true for initiating a method call
- Also true for returning from a method call
- Also true for declaring primitive variables

So, it takes altogether in the order of, say, 20 basic steps
- It is so fast we cannot easily measure the time.

We say it takes “order of a constant number of steps”:
- \(O(20) = O(1) \)
…to find a specific Account in the Bank?

```java
public Account findAccount(int aNum) {
    for(int i = 0; i < accCount; i++) {
        Account account = allAccounts[i];
        if(account.getAccountNumber() == aNum) {
            return allAccounts[i];
        }
    }
    return null;
}
```
Well, it depends on `acctCount` the number of accounts in the Bank...

- Of course, it also depends on which account we search for:
 - If the account is in location 0, it takes just a few steps.
 - If it is in location 1000, it takes 1000 times of a few steps
 - If it is in location 2000, it takes 2000 times of a few steps
 - If it is in location 1000000000, it takes… you know…
 - If it is not found among the `acctCount.accounts`, it takes… order of `acctCount` steps

- We say it takes “order of N steps” where N is the number of accounts: the “order of the size of the input”
 - In general: $O(acctCount) = O(N)$
 - When you double `acctCount`, the time doubles! Linear!
Well, you may get lucky and find it right away. So?

- We are looking for the **worst-case** guarantees. When we are not lucky.

- We could be looking for the average-case scenario, but it is harder to compute than the worst-case. What is “average”?

- So, Big-Oh is measuring the **worst-case** performance of an algorithm.
public static int[]
twoSum(int[] nums, int target) {
 int[] indices = new int[2];
 for (int i=0; i < nums.length; i++){
 for (int j=i+1; j < nums.length; j++){
 if (nums[i] + nums[j] == target){
 indices[0] = i; indices[1] = j;
 }
 }
 }
 return indices;
}
Well, let’s measure it for different array sizes n

- Doubling the size of the array, more than doubles the time… much more…
- How long would it take with 80,000 numbers?

<table>
<thead>
<tr>
<th>n</th>
<th>Milliseconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,000</td>
<td>786</td>
</tr>
<tr>
<td>20,000</td>
<td>2,148</td>
</tr>
<tr>
<td>30,000</td>
<td>4,796</td>
</tr>
<tr>
<td>40,000</td>
<td>9,192</td>
</tr>
<tr>
<td>50,000</td>
<td>13,321</td>
</tr>
<tr>
<td>60,000</td>
<td>19,299</td>
</tr>
</tbody>
</table>
Why?

The nested-for loops!

For the 1st number, you need to form $n-1$ sums.

For the 2nd number, you need to form $n-2$ sums

For the 3rd number…

For the n th number …

All together?
So, what is the “order of complexity” for sumOf2Nums?

Let’s compute it:
Determining the Efficiency of Algorithms

- **Analysis of algorithms** is a major field that provides math tools for evaluating the efficiency of algorithmic solutions to problems.

- What is an **efficient** algorithm?
 - Taking less time (fewer steps) is better
 - Using less space is better
 - If you need to get data in/out of main memory it takes time

- Algorithm efficiency is **independent** of
 - Specific implementations and coding tricks (programming language, control statements)
 - Specific Computers (hardware chip, OS, clock speed)

- The **size of the input data** should matter
 - But a particular set of data should not matter
Single-statement Execution

- A statement that the computer can execute in one or a few (fixed number of) instructions, we count it as 1 step:

 \[
 O(1) = \text{"order of one"}
 \]

- This includes arithmetic operations, logical operations, assignments, but not necessarily function calls, recursive steps, etc.

- For example:

```c
// code with O(1) steps
int i = 100;
if (data[i] > maxNum) {
    maxNum = data[i];
    maxIndex = i;
}
```

Each of these statements is \(O(1) \).

Thus the overall order of \(k \) simple operations is

\[
k \cdot O(1) = O(1)
\]

where \(k \) is the number of individual statements.
Analyzing Single Loop Execution

- Need to determine how often a set of statements gets executed to determine the order of an algorithm.
- To analyze loop execution, first determine the order of the body of the loop, and then multiply that by the number of times the loop will execute.

```java
// n = numbers.length is the size of the array
for(int i = 0; i < n; i++) {
    if (numbers[i] == 0) {
        count++;
    }
}
```

The loop executes n times, and the body of the loop is O(1). Thus, the overall order is O(n) * O(1) = O(n)
Analyzing Nested Loop Execution

When loops are nested, we must multiply the complexity of the outer loop by the complexity of the inner loop.

```java
// n = numbers.length is the size of the array
for (int i = 0; i < n; i++) {
    for (int j = i + 1; j < n; j++) {
        if (numbers[i] + numbers[j] == 0) {
            count++;
        }
    }
}
```

Both the inner and outer loops have complexity of \(O(n) \)

When multiplied together, the order becomes \(n \times O(n) = O(n^2) \)
Analyzing Recursive Algorithms is harder

- Determining the order of a recursive algorithm
 - determine the order of the recursion (nº of times recursive definition is followed) and multiply it by the order of the body of the recursive method

- Example: Consider the recursive method to compute the product of integers from 1 to some n > 1

 public int fact (int n){
 int result;
 if (n == 1)
 result = 1;
 else
 result = n * fact(n-1);
 return result;
 }

 Size of the problem is n, the number of values to be multiplied
 Operation of interest is the multiplication operation
 The body of the method performs one multiplication, therefore is \(O(1) \)
 Each time the recursive method is invoked, n is decreased by 1, thus…
 …the recursive method is called \(n \) times
 The order of the entire algorithm is \(O(n) \)
Algorithm “Growth Rates”

- An algorithm’s time requirements is measured as a function of the problem size \(n \)

- Function’s growth rate enables the comparison between algorithms
 - Examples
 - Searching a sorted array requires time proportional to \(\lg n \)
 - Searching a list requires time proportional to \(n \)
 - Computing sumOf2Nums requires time proportional to \(n^2 \)

- Notation: Big-Oh aka “order of”
 - Searching a sorted array requires time \(O(\lg n) \)
 - Searching a list requires time \(O(n) \)
 - Computing sumOf2Nums requires \(O(n^2) \)

- Algorithm efficiency is typically a concern for large problems only (as \(n \) grows...)
Comparison of Growth Rates

<table>
<thead>
<tr>
<th>Function</th>
<th>10</th>
<th>100</th>
<th>1,000</th>
<th>10,000</th>
<th>100,000</th>
<th>1,000,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>log₂n</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>13</td>
<td>16</td>
<td>19</td>
</tr>
<tr>
<td>n</td>
<td>10</td>
<td>10²</td>
<td>10³</td>
<td>10⁴</td>
<td>10⁵</td>
<td>10⁶</td>
</tr>
<tr>
<td>n * log₂n</td>
<td>30</td>
<td>664</td>
<td>9,965</td>
<td>10⁵</td>
<td>10⁶</td>
<td>10⁷</td>
</tr>
<tr>
<td>n²</td>
<td>10²</td>
<td>10⁴</td>
<td>10⁶</td>
<td>10⁸</td>
<td>10¹⁰</td>
<td>10¹²</td>
</tr>
<tr>
<td>n³</td>
<td>10³</td>
<td>10⁶</td>
<td>10⁹</td>
<td>10¹²</td>
<td>10¹⁵</td>
<td>10¹⁸</td>
</tr>
<tr>
<td>2ⁿ</td>
<td>10³</td>
<td>10³₀</td>
<td>10³₀¹</td>
<td>10³₀¹₀</td>
<td>10³₀¹₃</td>
<td>10³₀₁₀₃₀</td>
</tr>
</tbody>
</table>

- **Time units needed to solve problem of size**

Graph:
- **2ⁿ**
- **n³**
- **n²**
- **n log n**
- **n**
Order-of-Magnitude Analysis and “Big-Oh”

• Definition of the order of an algorithm:
 Algorithm A is order $f(n)$, denoted $A = O(f(n))$, if constants k and n_0 exist such that A requires no more than $k \times f(n)$ time units to solve a problem of size $n \geq n_0$.

• Growth-rate function
 – A mathematical function used to specify an algorithm’s order in terms of the size of the problem.

• “Big-Oh” notation
 – A notation that uses the capital letter O to specify an algorithm’s order
 – Example: $O(n)$, $O(n^2 \cdot \log n)$, $O(n^4)$, in general, $O(f(n))$
Order-of-Magnitude Analysis and “Big-Oh”

- Order of growth of some common functions

\[O(1) < O(\log_2 n) < O(n) < O(n \times \log_2 n) < O(n^2) < O(n^3) < O(2^n) \]

Note that < is **not** the arithmetic “less than” but it means “smaller order”

Where would you place:

- \(O(n^6) \)?
- \(O((\log_2 n)^2) \)?
Order-of-Magnitude Analysis and “Big-Oh”

Properties of growth-rate functions

- Summing orders is dominated by the larger order
 \[O(f(n)) + O(g(n)) = O(f(n) + g(n)) = O(\text{max}\{f(n), g(n)\}) \]
 Therefore, you can ignore low-order terms
 \[O(n^2 + n) = O(n^2) \]

- Multiplying orders means multiplying terms
 \[O(f(n)) \times O(g(n)) = O(f(n) \times g(n)) \]
 Therefore, you can ignore multiplicative constants
 \[O(12 \times n^2) = O(n^2) \]
/**
 * Adds a CD to the collection of n CDs, increasing the
 * size of the collection if necessary
 */

public void addCD (String title, String artist, double cost,
 int tracks) {
 if (count == collection.length)
 increaseSize();
 collection[count] = new CD(title, artist, cost, tracks);
 totalCost += cost;
 count++;
}
/**
 * Increases the capacity of the collection by
 * creating a larger array and copying
 */

private void increaseSize(){
 CD[] temp = new CD[collection.length * 2];

 for (int cd = 0; cd < collection.length; cd++){
 temp[cd] = collection[cd];
 }
 collection = temp;
}
Worst Case and Average Case Analyses

- An algorithm can require different times to solve different problems of the same size
 - **Worst-case analysis**
 - A determination of the maximum amount of time that an algorithm requires to solve problems of size n
 - Big-O uses worst-case analysis
 - **Average-case analysis**
 - A determination of the average amount of time that an algorithm requires to solve problems of size n
Keeping your Perspective

• Throughout the course of an analysis, keep in mind that you are interested only in significant differences in efficiency.

• When choosing an ADT’s implementation, consider how frequently particular ADT operations occur in an application.

• Some seldom-used but critical operations must be efficient.

• If the problem size is always small, you can probably ignore an algorithm’s efficiency.

• Weigh the trade-offs between an algorithm’s time requirements and its memory requirements.

• Compare algorithms for both style and efficiency.

• Order-of-magnitude analysis focuses on large problems.