

A familiar place…

lulu
jewett pendleton science

clapp

founders

chapel

tower

club

Graphs (and Networks)

� Graphs are made up of
� nodes (or vertices) and
� connections between them

(or edges)

� Vertices typically have a name
or label, e.g., 3 or Duo

� Edges are referenced by the
pair of vertices they connect,
e.g., (3,2) or (Duo, Cat)

� When nodes represent entities,
connections represent
relationships.
� In this case graphs are also

called Networks.

Ali Cat

Duo

Bea

Graphs and Networks

Ali Cat

Duo

Bea

co-worker

friendbrothers

friend

Protein 1 Protein 2

Protein 5

Protein 9

Movie 1

Movie 3
Movie 2

Actor 3

Actor 1 Actor 2

Actor 4

Movie 4

(Undirected) Graph Definition

� Our first non-linear data structure!

� An undirected graph G consists of
two sets G = {V, E}
� A set of V vertices, or nodes
� A set of E edges, relationships between nodes

� A subgraph G’ consists of a subset of the
vertices and edges of G

� Adjacent are two vertices connected by an
edge

� An edge that connects a vertex to itself
is called a self-loop or sling. We will avoid them.

V = { }

E = { (,), (,),
(,), (,), (,) }

Paths and Cycles

� A path between two vertices is a sequence of edges
that begins at the first vertex and ends at the other vertex

(The edges in the path could be required to be distinct or not.)

� A simple path
� is a path that passes through a vertex at most once

� A cycle
� is a path that begins and ends at the same vertex

� A simple cycle
� A cycle that does not pass through a vertex more than once

� A graph that has no cycle is called Acyclic

i
a

b

c

g

e
df

h

(undirected) Graph Connectivity

� A connected graph
is a graph that has a path
between each pair of vertices

� A disconnected graph
is a graph that has at least one
pair of vertices without a path
between them

� A connected component is
a connected subgraph of the
graph

b

c

e
d

h

i
a

g

f

Complete Graph

� A complete graph
� is a graph that has an edge

between every pair of distinct vertices

� How many edges does a complete graph with n vertices
have?

a b

e

a b

g

ef

a b

g

e

Tree
a connected Graph without cycles

How many simple paths are there
between two tree nodes?

How many edges does a tree
with n nodes have?

Directed Graphs and DAGs

� Directed graph G = {V, A}
� Arcs (or links) are directed edges between vertices
� A vertex y is adjacent to vertex x iff (if and only if)

there is an arc (directed edge) from x to y

� Directed path is a sequence of arcs between two vertices

� Directed cycle is a directed path from a vertex to itself

� Directed Acyclic Graph (DAG) is a digraph
without directed cycles

� You could turn
a digraph into a DAG
by removing some arcs to break cycles
� How few arcs can you remove to turn this digraph into a DAG?

V = { }

A = { (,), (,),
(,), (,), (,) }

Visualizing Graphs with yEd

� yEd: A simple graph visualization

� Download it:
https://www.yworks.com/products/yed

� You can create any graph by clicking
(for vertices) and clicking-and-
dragging (for edges)

� Lots of graph formats supported.
Use .tgf for simplicity

� Once you upload a file, choose
Layout > Circular
to see it laid out nicely.
Explore more layouts for fun!

1 A
2 B
3 D
4 C
#
1 2
2 3
3 4
2 4
1 3

tgf

DiGraph
Strong Connectivity

� A strongly connected graph
� A graph that has a

directed path
between any pair of vertices

� A strongly connected component
of a graph
� a maximally

strongly connected subgraph

� How many strongly connected
components do you see in this
digraph?

Implementing Graphs

An undirected graph G consists of two sets G = {V, E},
a set V of vertices and

a set E of edges.

A digraph G consists of two sets G = {V, A},
a set V of vertices and

a set A of arcs (directed edges)

public interface DiGraph<T> {

public int getNumVertices() // Returns number of vertices
public int getNumArcs() // Returns the number of arcs

public void addVertex(T v) // Insert a vertex in a graph
public void removeVertex(T v) // Delete a vertex along with

any arcs between v and other vertices

public void addArc(T v1, T v2) // Adds an arc from v1->v2

public void removeArc(T v1, T v2) // Deletes the arc between
two given vertices in a graph

public boolean isArc(T v1, T v2) // Returns true iff an arc
exists between vertices v1 and v2

public boolean isEmpty() // Returns true iff a graph is empty

public String toString() // Returns a String representation

public void saveToTGF(String fName) // Saves graph fName.tgf

Implementing (Di)Graphs
with Adjacency Matrix

NOTE: If a digraph has
between every pair of vertices

either both arcs or none,
then it can be considered undirected

0 1 2 3
0 0 0 1 1
1
2
3

0 0 1 0
1 1 0 0
0 0 1 0

Arcs

What do you need to add to turn this digraph into an undirected graph?
What property does the matrix of an undirected graph have?

Adjacency Matrix

� Adjacency matrix for digraph with
� n vertices: numbered 0, 1, …, n – 1
� arcs: boolean n ´ n array where arcs[i][j] =

� 1 (true) if there is an arc from vertex i to vertex j
� 0 (false) if there is no arc from vertex i to vertex j

c

b

a

d

0 1 2 3
a b c d

0 1 2 3
0 0 0 1 1
1
2
3

0 0 1 0
1 1 0 0
0 0 1 0

Arcs

Vertices

public class AdjMatDiGraph<T> implements DiGraph<T> {

private final int DEFAULT_CAPACITY = 10;

private boolean[][] arcs; // adjacency matrix of arcs

private T[] vertices; // array of vertices (could be a Vector)

private int n; // number of vertices in the graph

public AdjMatGraph(){ // constructor

this.n = 0;

this.arcs = new boolean[DEFAULT_CAPACITY][DEFAULT_CAPACITY];

this.vertices = (T[])(new Object[DEFAULT_CAPACITY]);

}

public boolean isEmpty(){… // returns true if a graph is empty

}

public int getNumVertices(){… // returns the number of vertices

}

public int getNumArcs(){… //returns the number of arcs
//count them!

} etc…

AdjMatDiGraph<T>

Implementing
(Di)Graphs with
Adjacency Lists

NOTE: If a digraph has
between every pair of vertices

either both arcs or none,
then it can be considered undirected

a c d /

b

c

d

c /

a b /

c /

Arcs

Adjacency Lists

• An adjacency list for a DiGraph with
• n vertices numbered 0, 1, …, n – 1
• arcs: array (or Vector) of n linked lists

– The ith linked list has a list entry for vertex j
iff the graph contains an arc from vertex i to vertex j

c

b

a

d

a c d /

b

c

d

c /

a b /

c /

Arcs

Undirected & Directed
Graph Representation

• We can use either AdjMatDiGraph or AdjListDiGraph to represent both
undirected and directed graphs.

• In an undirected graph every edge v–w appears
as two arcs v ->w and w->v in the adjacency lists

• What do you need to add to turn this digraph into an undirected graph?

c

b

a
a c /

b

c

c /

a b /

Arcs

c

b

a

d

d

public class AdjListDiGraph<T> implements DiGraph<T> {

private Vector<T> vertices;

private Vector<LinkedList<T>> arcs; // adjacency lists of arcs

public AdjListDiGraph(){ // constructor

this.arcs = new Vector<LinkedList<T>>();

this.vertices = new Vector<T>();

}

public boolean isEmpty(){… // returns true if a graph is empty

}

public int getNumVertices(){… // returns the number of vertices

}

public int getNumArcs(){… //returns the number of arcs
//count them!

} etc…

AdjListDiGraph<T>

Practicing with the
Wellesley Campus

WC Campus Undirected
Graph

lulu
jewett pendleton science

clapp

founders

chapel

tower

club

WC Campus DiGraph

5
4 6 7

1

3

0

8

2

WC Campus DAG

5
4 6 7

1

3

0

8

2

