


How fast Search Engines 
search?

� They have a *huge* collection of  N items

� How can they organize them so that they can search 
fast (in terms of  O(?) or even in number of  steps)?
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How Search Engines 
work

They count words, 
and they find them fast…



How Search Engines Work
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Computing Word Index and Frequency

i am sam
i am sam
sam i am
that sam i am
that sam i am
i do not like
that sam i am
do you like green eggs and ham
i do not like them
sam i am
i do not like
green eggs and ham
would you like them
here or there
i would not like them
here or there
i would not like them
anywhere
i do not like
green eggs and ham
i do not like them
sam i am
would you like them
in a house
would you like them
with a mouse

i do not like them
in a house
i do not like them
with a mouse
i do not like them
here or there
i do not like them
Anywhere
i do not like green eggs and ham
i do not like them sam i am
would you eat them
in a box
would you eat them
with a fox
not in a box
not with a fox
not in a house
not with a mouse
i would not eat them here or there
i would not eat them anywhere
i would not eat green eggs and ham
i do not like them sam i am
would you could you 
in a car
eat them eat them
here they are
i would not 
could not
in a car

a :59
am  :16
and  :25
anywhere  :8
are  :2
be  :4
boat  :3
box  :7
car  :7
could  :14
dark  :7
do  :37
eat  :25
eggs  :11
fox  :7
goat  :4
…
try  :4
will  :21
with  :19
would  :26
you  :34



Challenges in counting words

� In a document we read a word (e.g., “eggs”)
We need to keep a counter for every word
and increment its counter. 

� What data structure should we use?
� Where do we store the counters? 
� How do we find the counter for “eggs” fast?

� Maybe a sorted array of  words ordered lexicographically?
� The English language has half-a-million words. 

Keeping a sorted array of  500K words is not fast for Google
� How long would it take to find a word’s counter in it?

� With the Hashing technique the order is determined by 
some function of  the value of  the element to be stored



Let’s play darts (aka: let’s “hash the keys”)

“Brian”
hash(“Brian”)

1

“Stella”
hash(“Stella”)

5

“Ellen”
hash(“Ellen”)

4

“Takis”

“Christine”

“Lyn”
hash(“Lyn”)

11
“Lyn”

hash(“Takis”)
6 “Takis”

hash(“Christine”)
2

Define hash(key) HashTable

“Christine”

0

1

2

3

4

5

6

7

8

9

10

12

11

“Ellen”
“Stella”

“Brian”

Keys

“Orit” à ?



Hashing the keys

• To search for an entry in the table: 

• Compute the hash function on the entry’s key, then
• Use the value of  the hash function as an index into the 
HashTable.

• Cool!! But: (Catherine, Caroline, Christine)
– What if  two or more keys collide on the same index?

•Then employ some method of  collision resolution.
– Like what?



Load Factor N items / capacity M: 
When M is large enough?

• N/M  = load factor of  a hashtable
• number of  entries N in table 
• divided by the table capacity M.

•Heuristics:
•If  you know N, make M = 1.5 * N

• If  you do not know N, 
provide for dynamic resizing:
Create larger HashTable
and insert old elements into new
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Hash Functions: Mod-Division

• Good:
hash(key) = f(key) % M

M: capacity, a prime number
f(): some function that produces a number, 

e.g., f(key) = key.charAt(0) – ‘A’

• Better:
hash(key) = ((a * f(key) + b) % P) %  M

prime P >> N entries
a, b: positive integers



What are the Pros and Cons of  Hashing?

Pros
• Searching O(  )
• Adding  O(  )
• Removing  O(  )

Cons
• You cannot keep adding new elements for ever!

– Hash Table is an array, its size is fixed
– When it needs space expansion capabilities:  O(  ) 

• There is no perfect hashing function! 
– Many items may end up colliding on same location, 
– Collisions require resolution policy



Even Object in Java 
has its own hashing function!

� The java.lang.Object class defines a method 
called hashcode() that returns an integer based on the 
memory location of  the object
� Object’s default method is generally not very useful

� Classes (derived from Object) often override the 
inherited definition of  hashcode() to provide their own 
version

� For example, String and Integer define their own 
hashcode methods
� These more specific hashcode functions are more effective



Java’s hashCode() methods



Java’s hashCode() methods



Resolving Collisions

� Inevitably, if  there are fewer buckets than keys, 
some keys will resolve to the same location 
regardless of  the hash function we choose.

� In these cases, we must decide how to
resolve collisions



Resolving Collisions idea #1: Separate Chaining
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Resolve Open Addressing Collisions with
Linear Probing

• When the index hashed to is occupied by a stranger, probe
the next position.

• If  that position is empty, we insert the entry, otherwise, we 
probe the next position and repeat. 

0 1 2 3 4 5 6 7 8 9 10

A H

H  A  S  H  I  N  G  I  S  F  U  N
8  1  19 8  9  14 7  9  19 6  21 14



There is a problem though: Clustering

• As the table begins to fill up, more and more entries must be 
examined before the desired entry is found.

• Insertion of  one entry may greatly increase the search time 
for others. 
For example, consider H, S, H, I, ... 

0 1 2 3 4 5 6 7 8 9 10

A H

H  A  S  H  I  N  G  I  S  F  U  N
8  1  19 8  9  14 7  9  19 6  21 14



Computing 
Word Frequency
Which word is the most used?



The Java Hashtable<K,V> Class

• Located in java.util
• Methods

– int size()
// returns number of keys in table

– V get(Object key)
// returns value to which specified key is mapped in table

– V put(K key, V value)
// maps key to specified value in table

– boolean containsKey(Object key)
// tests if the specified Object is a key in hash table

– V remove(Object key)
// removes key and corresponding value from table

– ...



Basic Word Frequency pseudocode

Count the number of times each word from an input document
appears in the document

Define table = new Hashtable<String, Integer>();

Start by reading the input document
while (there are more words in the document) {

read the next word
if (the table contains already the word) {

see how many times it has been seen before and
add +1 to its frequency counter 

}
else if it is the first time you’ve seen the word
insert in the table a counter = 1 for this word

}
At the end, we have counted all the frequencies of each word



Basic Word Frequency code

import java.util.Hashtable;
import java.io.File;

Hashtable<String, Integer> table = 
new Hashtable<String, Integer>();

Scanner reader = new Scanner(new File(filename));
while (reader.hasNext()) {

String word = reader.next();
if (table.containsKey(word) {

int previousCount = table.get(word);
table.put(word, previousCount+1);

}
else table.put(word, 1);
totalWords++;

}
reader.close();



Words popular with Shakespeare





import java.io.File;

// args[0] is the name of a directory

dir= new File(args[0] + "/");

// dir points to the directory’s contents

File[]files= dir.listFiles();

System.out.println(files.length + "files");

for(File f:files) 

if(!f.isHidden()) 

process(f); // i.e. count word frequencies

What if  there are many files


