The Hashing Technique

N

)

You have a huge number of items
and you want to search them. Fast!

You don’t have time to spare
but you have space to spare

How fast Search Engines
search?

o

«R® They have a *huge* collection of N items

«® How can they organize them so that they can search
fast (in terms of O(?) or even in number of steps)?

I T T T

Unsorted
Array

Unsorted
LinkedList

Sorted
Array

Sorted
LinkedList

"election at the end -add

-Search Engines

..-“Selected" + str(-od1filv -
#eirror ob.select =

bpy .context. selected ob
#ata.objects[one: WOIk
exacs

grint("please selec

OR CLASSES ----

ey count words,
and th,,e ﬁnd them fast

ese

How Search Engines Work

Web
crawl the
Document web
Create

word index
Index &
check i
frequencies requencies

Words appearing frequently in a document
likely mean that they describe the document

earch
engine
erver

Computing Word Index and Frequency

1am sam

1 am sam

sam 1am

that sam 1 am

that sam 1 am

1 do not like

that sam 1 am

do you like green eggs and ham
1 do not like them
sam 1am

1 do not like

green eggs and ham
would you like them
here or there

1 would not like them
here or there

1 would not like them
anywhere

1 do not like

green eggs and ham

1 do not like them
sam 1am

would you like them
in a house

would you like them
with a mouse

1 do not like them

1n a house

1 do not like the%

with a mouse

1 do not like them

here or there

1 do not like them
Anywhere

1 do not like green eggs and ham
1 do not like them sam 1 am
would you eat them

1n a box

would you eat them

with a fox

not in a box

not with a fox

not in a house

not with a mouse

1 would not eat them here or there

1 would not eat them anywhere

1 would not eat green eggs and ham

1 do not like them sam 1 am
would you could you

1n a car

eat them eat them

here they are

1 would not

could not

1n a car

a:59

am :16
and :25
anywhere :8
are :2

be 4
boat :3
box :7
car 7
could :14
dark :7
do :37
eat :25
eggs :11
fox :7
goat 4
try 4
will :21
with :19
would :26
you :34

Challenges 1n counting words

—onr—
In a document we read a word (e.g., “eggs”)

We need to keep a counter for every word
and increment its counter.

What data structure should we use?
R Where do we store the counters?
R How do we find the counter for “eggs” fast?

Maybe a sorted array of words ordered lexicographically?

R The English language has half-a-million words.
Keeping a sorted array of 500K words 1s not fast for Google

R How long would it take to find a word’s counter in it?

With the Hashing technique the order 1s determined by
some function of the value of the element to be stored

Let’s play darts (aka: let’s “hash the keys”)

Keys Define hash (key) HashTable
11 . »y hash (“Brian”) 0
Brian o] - =
“ = gl Stellery 2 “Christine”
Stella < :
2 E Etsla s e 4 “Ellen”
Ellen g | = z
5 Stella
b e [o e Sl =) . “Talis”
Takis SRR
7
! o Freiht (e s e)
Christine T ¢
9
s = Fi Rl)
Lyn T 10
11 “Lyn”
“Orit? =27 12

Hashing the keys

* To search for an entry 1n the table:

« Compute the hash function on the entry’s key, then
e Use the value of the hash function as an index into the
HashTable.

e Cool!! But: (Catherine, Caroline, Christine)
— What if two or more keys collide on the same index?

*Then employ some method of collision resolution.
— Like what?

LLoad Factor N items / capacity M.

When M is large enough?
0
« N/M = load factor of a hashtable 3 “Brian”
» number of entries N 1n tab}e > “Christine”
» divided by the table capacity M. -
4 “Ellen”
“Stella”
*Heuristics: Z “T;eki:”
If you know N, make M =1.5* N :
o If you do not know N, 2
provide for dynamic resizing: -
Create larger HashTable 1o e
and insert old elements into new e Dt
1:2

Hash Functions: Mod-Division

* Good:
hash(key) = flkey) % M
M: capacity, a prime number
f(): some function that produces a number,

e.g., flkey) = key.charAt(0) — ‘A’

* Better:
hash(key) = ((a * f(key) + b) % P) % M
prime P >> N entries
a, b: positive integers

What are the Pros and Cons of Hashing?

Pros

* Searching O()
* Adding O()
* Removing O()

Cons

* You cannot keep adding new elements for ever!
— Hash Table 1s an array, its size 1s fixed
— When it needs space expansion capabilities: O()

 There 1s no perfect hashing function!
— Many items may end up colliding on same location,
— Collisions require resolution policy

Even Object 1n Java
has 1ts own hashing function!

e

R The java.lang.Object class defines a method
called hashcode() that returns an integer based on the
memory location of the object

R Object’s default method 1s generally not very useful

& Classes (derived from Object) often override the
inherited definition of Aashcode() to provide their own
version

R For example, String and Integer define their own
hashcode methods

R These more specific hashcode functions are more effective

Java’s hashCode() methods

Java library implementations

public final class Integer

{

private final int value;

public int hashCode()
{ return value; }

public final class Boolean

{

private final boolean value;

public int hashCode()

{
if (value) return 1231;
else return 1237;

public final class Double

{
private final double value;
public int hashCode()
{
Tong bits = doubleToLongBits(value);
return (int) (bits A (bits >>> 32));
} A
}

convert to IEEE 64-bit representation;
xor most significant 32-bits
with least significant 32-bits

Warning: -0.0 and +0.0 have different hash codes

Java’s hashCode() methods

Java library implementation

public final class String m
{

private final char[] s;

lal 97
public int hashCode() b 98
t 'c' 99

int hash = 0;
for (int i = 0; i < lengthQ); i++)
hash = s[i] + (31 * hash);

return hash; “\\\\
}

ith character of s

 Horner's method to hash string of length L: L multiplies/adds.
e Equivalentto A=s[0] -3151 + ...+ s[L-3] 312 + s[L-2]- 31! + s[L-1]-310°.

EX. String s = "call";
int code = s.hashCode(); <«—— 3045982=099-313+97-312+108-31' +108-31°

=108+ 31- (108 +31-(97 + 31 -(99)))
(Horner's method)

Resolving Collisions

o

R Inevitably, if there are fewer buckets than keys,
some keys will resolve to the same location
regardless of the hash function we choose.

«® In these cases, we must decide how to
resolve collisions

Resolving Collisions 1dea #1: Separate Chaining

“Brian”
“Stella”
“Ellen”
111 Lyn ”
“Takis”
0 o
1 __». (11 Orit ”
2 ——®
3 o
4 e
5 | o
61— O

Resolve Open Addressing Collisions with
Linear Probing

« When the index hashed to 1s occupied by a stranger, probe
the next position.

o If that position 1s empty, we insert the entry, otherwise, we
probe the next position and repeat.

Hest e N G Teos 5 R S|
829 Td 2T 9 1 9 ahss Slleasld

1 2 3 4 5 6 / 8 9 10

There 1s a problem though: Clustering

 As the table begins to fill up, more and more entries must be
examined before the desired entry 1s found.

* Insertion of one entry may greatly increase the search time

for others.
For example, consider H, S, H, I, ...

Hest e N G Teos 5 R S|
829 Td 2T 9 1 9 ahss Slleasld

1 2 3 4 5 6 / 8 9 10

"selection a‘: the end -add

1o, o

"Selected” + str fier 0
#sirror_ob.select = 0

WordFrequency

arint(pleas

Which word is th@’H8%t tsed?

The Java Hashtable<K, V> Class

 Located in java.util
* Methods

- int size ()
// returns number of keys in table

- V get (Object key)
// returns value to which specified key is mapped in table

- V put (K key, V value)
// maps key to specified value in table

- boolean containsKey (Object key)
// tests if the specified Object is a key in hash table

— V remove (Object key)
// removes key and corresponding value from table

Basic Word Frequency pseudocode

Count the number of times each word from an input document
appears in the document
Define table = new Hashtable<String, Integer>();

Start by reading the input document
while (there are more words in the document) {
read the next word
if (the table contains already the word) ({
see how many times it has been seen before and
add +1 to its frequency counter
}
else if it is the first time you’ve seen the word
1l for this word

insert in the table a counter

}

At the end, we have counted all the frequencies of each word

Basic Word Frequency code

import java.util.Hashtable;
import java.io.File;
Hashtable<String, Integer> table =
new Hashtable<String, Integer>() ;

Scanner reader = new Scanner (new File(filename)) ;
while (reader.hasNext()) {
String word = reader.next();
if (table.containsKey (word) {
int previousCount = table.get (word) ;
table.put (word, previousCount+l) ;
}
else table.put(word, 1);
totalWords++;
}

reader.close() ;

Words popular with Shakespeare

Frequency

100000

10000

1000

100

10

wyym
ynajus
paunosus
Forun
(1o
Apaes
suBRens
Aypros
pancys
pop|es
sHEanay
Ary
uvonedodad
v edwod
Himasod
JurpEne
sejaL
SACND K8
AMUOX e
SIS0
|5
ST L TV
1deway
s
Auwal
Panay
Ao nxo
yreunlus
pump
sucisap
puwen
PLSTRT]
e
[STERTE]
uopes
oPUIGNROG
aieag
uanuase
e

ym
e
syBoeis
Jouwns
Ad

assed
A
padol
U oayey
Ajpaunoney
suwp
RO
a%ing

ne
AP
appeds
Apend
sBuaow
WAwpiey
Mang
Josua
sBuviom
Jasapueps
CuNoY
ssaupand
uswung
UM
ye
ey
Japang
usmngs
shol

usm
Wwapsad
WS WAPUL W)
paded
AjngEooim
a#ecp
Ealll

el
anasas

Al

»e)

puss
UOIS5ITS
Judus
paa

e
ULy
Jaqupd
|[dus
NP
SQUEMDD
eI
unedsn
ey
sohep
YL

-

"

Return Method Description
Value
Hashtable() Constructs a new, empty hash table with a default initial
capacity (11) and load factor, which is 0.75.
Hashtable(int Constructs a new, empty hash table with the specified
initialCapacity) initial capacity and default load factor, which is 0.75.
Hashtable(int Constructs a new, empty hash table with the specified
initialCapacity, initial capacity and the specified load factor.
float loadFactor)
Hastable (Map t) Constructs a new hash table with the same mappings
as the given Map.

void clear() Clears this hash table so that it contains no keys.

Object clone() Creates a shallow copy of this hash table.

boolean contains(Object value) | Tests if some key maps into the specified value
in this hash table.

boolean containsKey(Object key) | Tests if the specified object is a key in this hash table.

boolean containsValue Returns true if this hash table maps one or more

(Object value) keys to this value.

Enumeration | elements() Returns an enumeration of the values in this hash table.

Set entrySet () Returns a set view of the entries contained in
this hash table.

boolean equals(Object o) Compares the specified Object with this Map for equality,
as per the definition in the Map interface.

Object get (Object key) Returns the value to which the specified key is mapped
in this hash table.

int hashCode () Returns the hash code value for this Map as per the
definition in the Map interface.

boolean isEmpty() Tests if this hash table maps no keys to values.

Enumeration | keys() Returns an enumeration of the keys in this hash table.

Set keysSet) Returns a set view of the keys contained in this hash table.

Object put (Object key Maps the specified key to the specified value in

Object value) this hash table.

void putAll (Map t) Copies all of the mappings from the specified Map to
this hash table. These mappings will replace any
mappings that this hash table had for any of the keys
currently in the specified Map.

protected rehash() Increases the capacity of and internally reorganizes this

void hash table, in order to accommodate and access
its entries more efficiently.

Object remove (Object key) Removes the key (and its corresponding value) from
this hash table.

int size() Returns the number of keys in this hash table.

String toString() Returns a string representation of this hash table object
in the form of a set of entries, enclosed in braces and
separated by the ASCII characters comma and space.

Collection | values() Returns a Collection view of the values contained in

this hash table.

What if there are many files

EmMpeEtava.lio.File; e

// args[0] is the name of a directory
dir= new File(args[0] + "/");
@ diz-points to the directory’s contents
File[]files= dir.listFiles();
System.out.println(files.length + "files }):
for(File f:files)

if(!f.isHidden())

process(f); // i.e. count word frequencies

