

How fast Search Engines
search?

� They have a *huge* collection of N items

� How can they organize them so that they can search
fast (in terms of O(?) or even in number of steps)?

Add Search Remove Space

Unsorted
Array

Unsorted
LinkedList

Sorted
Array

Sorted
LinkedList

How Search Engines
work

They count words,
and they find them fast…

How Search Engines Work

crawl the
web

Index &
Frequencies

Search
engine
servers

Web
Documents

A
query

THE
WEB

Rank
results

Create
word index

Words appearing frequently in a document
likely mean that they describe the document

check
frequencies

Computing Word Index and Frequency

i am sam
i am sam
sam i am
that sam i am
that sam i am
i do not like
that sam i am
do you like green eggs and ham
i do not like them
sam i am
i do not like
green eggs and ham
would you like them
here or there
i would not like them
here or there
i would not like them
anywhere
i do not like
green eggs and ham
i do not like them
sam i am
would you like them
in a house
would you like them
with a mouse

i do not like them
in a house
i do not like them
with a mouse
i do not like them
here or there
i do not like them
Anywhere
i do not like green eggs and ham
i do not like them sam i am
would you eat them
in a box
would you eat them
with a fox
not in a box
not with a fox
not in a house
not with a mouse
i would not eat them here or there
i would not eat them anywhere
i would not eat green eggs and ham
i do not like them sam i am
would you could you
in a car
eat them eat them
here they are
i would not
could not
in a car

a :59
am :16
and :25
anywhere :8
are :2
be :4
boat :3
box :7
car :7
could :14
dark :7
do :37
eat :25
eggs :11
fox :7
goat :4
…
try :4
will :21
with :19
would :26
you :34

Challenges in counting words

� In a document we read a word (e.g., “eggs”)
We need to keep a counter for every word
and increment its counter.

� What data structure should we use?
� Where do we store the counters?
� How do we find the counter for “eggs” fast?

� Maybe a sorted array of words ordered lexicographically?
� The English language has half-a-million words.

Keeping a sorted array of 500K words is not fast for Google
� How long would it take to find a word’s counter in it?

� With the Hashing technique the order is determined by
some function of the value of the element to be stored

Let’s play darts (aka: let’s “hash the keys”)

“Brian”
hash(“Brian”)

1

“Stella”
hash(“Stella”)

5

“Ellen”
hash(“Ellen”)

4

“Takis”

“Christine”

“Lyn”
hash(“Lyn”)

11
“Lyn”

hash(“Takis”)
6 “Takis”

hash(“Christine”)
2

Define hash(key) HashTable

“Christine”

0

1

2

3

4

5

6

7

8

9

10

12

11

“Ellen”
“Stella”

“Brian”

Keys

“Orit” à ?

Hashing the keys

• To search for an entry in the table:

• Compute the hash function on the entry’s key, then
• Use the value of the hash function as an index into the
HashTable.

• Cool!! But: (Catherine, Caroline, Christine)
– What if two or more keys collide on the same index?

•Then employ some method of collision resolution.
– Like what?

Load Factor N items / capacity M:
When M is large enough?

• N/M = load factor of a hashtable
• number of entries N in table
• divided by the table capacity M.

•Heuristics:
•If you know N, make M = 1.5 * N

• If you do not know N,
provide for dynamic resizing:
Create larger HashTable
and insert old elements into new

“Christine”

0

1

2

3

4

5

6

7

8

9

10

12

11

“Ellen”
“Stella”

“Brian”

“Lyn”

“Takis”

Hash Functions: Mod-Division

• Good:
hash(key) = f(key) % M

M: capacity, a prime number
f(): some function that produces a number,

e.g., f(key) = key.charAt(0) – ‘A’

• Better:
hash(key) = ((a * f(key) + b) % P) % M

prime P >> N entries
a, b: positive integers

What are the Pros and Cons of Hashing?

Pros
• Searching O()
• Adding O()
• Removing O()

Cons
• You cannot keep adding new elements for ever!

– Hash Table is an array, its size is fixed
– When it needs space expansion capabilities: O()

• There is no perfect hashing function!
– Many items may end up colliding on same location,
– Collisions require resolution policy

Even Object in Java
has its own hashing function!

� The java.lang.Object class defines a method
called hashcode() that returns an integer based on the
memory location of the object
� Object’s default method is generally not very useful

� Classes (derived from Object) often override the
inherited definition of hashcode() to provide their own
version

� For example, String and Integer define their own
hashcode methods
� These more specific hashcode functions are more effective

Java’s hashCode() methods

Java’s hashCode() methods

Resolving Collisions

� Inevitably, if there are fewer buckets than keys,
some keys will resolve to the same location
regardless of the hash function we choose.

� In these cases, we must decide how to
resolve collisions

Resolving Collisions idea #1: Separate Chaining

0

1

2

3

4

5

6

“Brian”

“Stella”

“Ellen”

“Lyn”

“Takis”

“Orit”

Resolve Open Addressing Collisions with
Linear Probing

• When the index hashed to is occupied by a stranger, probe
the next position.

• If that position is empty, we insert the entry, otherwise, we
probe the next position and repeat.

0 1 2 3 4 5 6 7 8 9 10

A H

H A S H I N G I S F U N
8 1 19 8 9 14 7 9 19 6 21 14

There is a problem though: Clustering

• As the table begins to fill up, more and more entries must be
examined before the desired entry is found.

• Insertion of one entry may greatly increase the search time
for others.
For example, consider H, S, H, I, ...

0 1 2 3 4 5 6 7 8 9 10

A H

H A S H I N G I S F U N
8 1 19 8 9 14 7 9 19 6 21 14

Computing
Word Frequency
Which word is the most used?

The Java Hashtable<K,V> Class

• Located in java.util
• Methods

– int size()
// returns number of keys in table

– V get(Object key)
// returns value to which specified key is mapped in table

– V put(K key, V value)
// maps key to specified value in table

– boolean containsKey(Object key)
// tests if the specified Object is a key in hash table

– V remove(Object key)
// removes key and corresponding value from table

– ...

Basic Word Frequency pseudocode

Count the number of times each word from an input document
appears in the document

Define table = new Hashtable<String, Integer>();

Start by reading the input document
while (there are more words in the document) {

read the next word
if (the table contains already the word) {

see how many times it has been seen before and
add +1 to its frequency counter

}
else if it is the first time you’ve seen the word
insert in the table a counter = 1 for this word

}
At the end, we have counted all the frequencies of each word

Basic Word Frequency code

import java.util.Hashtable;
import java.io.File;

Hashtable<String, Integer> table =
new Hashtable<String, Integer>();

Scanner reader = new Scanner(new File(filename));
while (reader.hasNext()) {

String word = reader.next();
if (table.containsKey(word) {

int previousCount = table.get(word);
table.put(word, previousCount+1);

}
else table.put(word, 1);
totalWords++;

}
reader.close();

Words popular with Shakespeare

import java.io.File;

// args[0] is the name of a directory

dir= new File(args[0] + "/");

// dir points to the directory’s contents

File[]files= dir.listFiles();

System.out.println(files.length + "files");

for(File f:files)

if(!f.isHidden())

process(f); // i.e. count word frequencies

What if there are many files

