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2-3 Trees: Guaranteed Balanced Search Trees (With Exercises)

Balanced Search Trees

Many data structures use binary search trees or generalizations thereof. Operations on such search
trees are often proportional to the height of the tree. To guarantee that such operations are efficient, it
is necessary to ensure that the height of the tree is logarithmic in the number of nodes. This is usually
achieved by some sort of balancing mechanism that guarantees that subtrees of a node never differ “too
much” in their heights (by either an additive or multiplicative factor).

There are many kinds of balanced search trees. Here we study a particularly elegant and easy-to-
understand form of balanced search tree known as a 2-3 tree. There are many other kinds of balanced
search trees, such as 2-3-4 trees (a generalization of 2-3 trees to include 4-nodes), B-trees (a generalization
of 2-3 and 2-3-4 trees, CLRS Ch. 18) red-black trees (CLRS Ch. 13), and AVL trees (CLRS Ex 13-3).

2-3 Trees

A 2-3 tree has three different kinds of nodes:

1. A leaf, written as .

2. A 2-node, written as

X

l r

X is called the value of the 2-node; l is its left subtree; and r is its right subtree. Every 2-node
must satisfy the following invariants:

(a) Every value v appearing in subtree l must be ≤ X.

(b) Every value v appearing in subtree r must be ≥ X.

(c) The length of the path from the 2-node to every leaf in its subtrees must be the same.

3. A 3-node, written as

X Y

l m r
.

X is called the left value of the 3-node; Y is called the right value of the 3-node; l is its left
subtree; m is its middle subtree; and r is its right subtree.

Every 3-node must satisfy the following invariants:

(a) Every value v appearing in subtree l must be ≤ X.

(b) Every value v appearing in subtree m must be ≥ X and ≤ Y .

(c) Every value v appearing in subtree r must be ≥ Y .

(d) The length of a path from the 3-node to every leaf in its subtrees must be the same.

1



The last invariant for 2-nodes and 3-nodes is the path-length invariant. The balance of 2-3 trees is
a consequence of this invariant. The height of a 2-3 tree with n nodes cannot exceed log2(n+1). Together,
the tree balance and the ordered nature of the nodes means that testing membership in, inserting an
element into, and deleting an element from a 2-3 tree takes logarithmic time.

2-3 Tree Examples

Given a collection of three or more values, there are several 2-3 trees containing those values. For
instance, below are all four distinct 2-3 trees containing first 7 positive integers.

4

2

1 3

6

5 7

2 5

1 3 4 6 7

t1 t2

3 5

1 2 4 6 7

3 6

1 2 4 5 7

t3 t4

We shall use the term terminal node to refer to a node that has leaves as its subtrees. To save
space, we often will not explicitly show the leaves that are the childred of a terminal node. For instance,
here is another depiction of the tree t2 above without the explicit leaves:

2 5

1 3 4 6 7

2



2-3 Tree Insertion: Downward Phase

When inserting an element v into a 2-3 tree, care is required to maintain the invariants of 2-nodes
and 3-nodes. As shown in the rules below, the order invariants are maintained much as in a binary search
tree by comparing v to the node values encountered when descending the tree and moving in a direction
that satisfies the order invariants.

In the following rules, the result of inserting an element v into a 2-3 tree is depicted as a circled v
with an arrow pointing down toward the tree in which it is to be inserted. X and Y are variables that
stand for any elements, while triangles labeled l, m, and r stand for whole subtrees.

v

X

l r

v ≤ X⇒
X

v

l

r

v

X

l r

X < v⇒
X

l

v

r

v

X Y

l m r

v ≤ X⇒
X Y

v

l

m r

v

X Y

l m r

X < v ≤ Y⇒
X Y

l

v

m

r

v

X Y

l m r

Y < v⇒
X Y

l m

v

r

The rules state that elements equal to a node value are always inserted to the left of the node. This
is completely arbitrary; they could be inserted to the right as well.

Note that the tree that results from inserting v into a tree T had better not have a different height
from T . Otherwise, the path-length invariant would be violated. We will see how this plays out below.
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2-3 Tree Insertion: Base Case

What happens when v reaches a leaf?
v

It’s impossible to push it down further, and it’s impossible

to “absorb” it.

Intuitively, our only option is to make a 2-node whose value is v with two leaf subtrees:

v

But then the path-length invariant would be violated, since the height would increase from 0 to 1. For
example:

A

B
⇒

B

A ⇒
B

A

The rightmost tree above is not a valid 2-3 tree because different paths from B to a leaf have different
lengths.

Instead of making a “real” 2-node, we’ll make a “pseudo” 2-node depicted as v . This notation

indicates that there is “no room” for the element v “downstairs”, so it is being “kicked upstairs”. As
we shall see, a value may need to be kicked up many levels, so the subtrees of a kicked-up node can be

non-trivial. In general, a kicked-up node has the form
w

a b

where w is the kicked-up value and

a and b are 2-3 trees with the same height h. We will consider the “height” of such a configuration to be
the height of its subtrees. This is because w is not really considered a part of the configuration, and so
does not contribute to its height.

So we are left with the following rule for insertion into a leaf:

v ⇒ v

This base case converts the downward phase of insertion into an upward phase. The rest of the insertion
rules now deal with the upward phase.
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2-3 Tree Insertion: Upward Phase

If there is a 2-node upstairs, the kicked-up value w can be absorbed by the 2-node:

X

w

l m

r ⇒ w X

l m r

X

l
w

m r

⇒ X w

l m r

By our assumptions about height, the resulting tree is a valid 2-3 tree.

If there is a 3-node upstairs, w cannot simply be absorbed. Instead, the 3-node is split into two
2-nodes that become the subtrees of a new kicked-up node one level higher. The value w and the two
3-node values X and Y are appropriately redistributed so that the middle of the three values is kicked
upstairs at the higher level:

X Y

w

a b

c d ⇒
X

w

a b

Y

c d

X Y

a
w

b c

d ⇒
w

X

a b

Y

c d

X Y

a b
w

c d

⇒
Y

X

a b

w

c d

The kicking-up process continues until either the kicked-up value is absorbed or the root of the tree
is reached. In the latter case, the kicked-up value becomes the value of a new 2-node that increases the
height of the tree by one. This is the only way that the height of a 2-3 tree can increase.
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Convince yourself that heights and element order are unchanged by the downward and upward phases
of the insertion algorithm. (The preservation of height follows from an inductive proof that the ”kicked-
up node” resulting from an insertion has exactly the same height as the tree into which the insertion was
made.) This means that the tree resulting from insertion is a valid 2-3 tree.

2-3 Tree Insertion: Special Cases for Terminal Nodes

The aforementioned rules are all the rules needed for insertion. However, insertion into terminal nodes
is tedious because the inserted value will be pushed down to a leaf and then reflected up right away. To
reduce the number of steps performed in examples, we can pretend that insertion into terminal nodes is
handled by the following rules:

v

X

v ≤ X⇒ v X

v

X

X < v⇒ X v

v

X Y

v ≤ X⇒ X

v Y

v

X Y

X < v ≤ Y⇒ v

X Y

v

X Y

Y < v⇒ Y

X v

2-3 Tree Insertion: Implementation

The above rules can be implemented in any programming language, though the implementation is
significantly easier in languages that support so-called algebraic or sum-of-products datatypes (such
as Standard ML, OCaml, and Haskell). Insertion can be implemented as a recursive method/procedure/-
function that returns either a regular 2-3 tree or a “kicked-up” configuration. The upward phase rules
are implemented by handling a “kicked-up” configuration result from a recursive subcall.

We haven’t said whether our 2-3-trees are immutable or mutable. It turns out it doesn’t matter – the
above insertion rules work for either case if interpreted appropriately.
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2-3 Tree Insertion Example (Exercise)

Below is the start of an example of inserting the letters of A L G O R I T H M S into an initially
empty 2-3 tree. It shows the result of inserting A L G O, using terminal node optimizations to simplify
the sequence. Complete the example by inserting the remaining letters R I T H M S in order.

insert→
A

A insert→
L

A L insert→
G

G

A L new root→

G

A L insert→
O

G

A L O

7



2-3 Tree Deletion: In-order Successors and Predecessors

We’ve now completed the algorithm for inserting a value into a 2-3 tree. Next we’ll describe the
algorithm for deleting a value from a 2-3 tree.

As part of this deletion algorithm, we’ll use the notions of the in-order predecessor and in-order
successor of a value in a nonterminal node.

In-order Predecessor

• For a value in a 2-node or a left value in a 3-node, its in-order predecessor is the rightmost value in
the left subtree of the node;

• For a right-value in a 3-node, its in-order predecessor is the rightmost value in the middle subtree
of the node.

In-order Successor

• For a value in a 2-node or a right value in a 3-node, its in-order sucessor is the leftmost value in
the right subtree of the node;

• For a left-value in a 3-node, its in-order successor is the leftmost value in the middle subtree of the
node.

Examples Below, the in-order predecessor and successor is shown for every value in a nonterminal node.

K S

D

B

A C

F H

E G I J

O

M

L N

Q

P R

Z

V X

T U W Y

β

α γ

Value In-order Predecessor In-order Successor

B A C

D C E

F E G

H G I

K J L

M L N

O N P

S R T

V U W

X W Y

Z Y α

β α γ
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2-3 Tree Deletion: Downward Phase

The downward phase for deleting an element from a 2-3 tree is the same as the downward phase for
inserting an element except for the case when the element to be deleted is equal to the value in a 2-node
or a 3-node. In this case, if the value is not part of a terminal node, the value is replaced by its in-order
predecessor or in-order successor. (This is the strategy used when deleting a nonterminal value from a
regular binary search tree.) By default, we will use the in-order successor, but that’s an arbitrary choice,
and the in-order predecessor would work as well.

In any case, deletion leaves a hole in a terminal node. For example, deleting K from the large tree
(and replacing it by its in-order predecessor J, yields a tree in which there’s a hole in the right value of
the fringe 3-node where the J used to be:

J S

D

B

A C

F H

E G I

O

M

L N

Q

P R

Z

V X

T U W Y

β

α γ

If instead , S is deleted from the large tree (and is replaced it by its in-order predecessor R) the result
is a tree in which there’s a hole in the fringe 2-node where the R used to be:

K R

D

B

A C

F H

E G I J

O

M

L N

Q

P

Z

V X

T U W Y

β

α γ

The goal of the rest of the deletion algorithm is to remove the hole without violating the other
invariants of the 2-3 tree.

2-3 Tree Deletion: Terminal Cases

Handling the removal of a hole from a terminal 3-node is easy: just turn it into a 2-node!

X ⇒ X ⇐ X

To deal with a hole in a terminal 2-node, we consider it to be a special hole node that has a single
subtree.

⇒

For the purposes of calculating heights, such a hole node does contribute to the height of the tree.
This decision allows the the path-length invariant to be preserved in trees with holes.
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2-3 Tree Deletion: Upward Phase

If no hole results from deleting the value, the deletion algorithm is done, and the result is a valid 2-3
tree.

If a hole is creating by deleting the value, the goal of the upward phase of 2-3 tree deletion is to
propagate the hole up the tree until it can be eliminated. It is eliminated either (1) by being “absorbed”
into the tree (as in the cases 2, 3, and 4 below) or (2) by being propagated all the way to the root of the
2-3 tree by repeated applications of the case 1. If a hole node propagates all the way to the top of a tree,
it is simply removed, decreasing the height of the 2-3 tree by one. This is the only way that the height
of a 2-3 node can decrease.

There are four cases for hole propagation/removal, which are detailed below. You should convince
yourself that each rule preserves both the element-order and path-length invariants.

1. The hole has a 2-node as a parent and a 2-node as a sibling.

X

l

Y

m r

⇒ X Y

l m r

⇐
Y

X

l m r

In this case, the heights of the subtrees l, m, and r are the same.

2. The hole has a 2-node as a parent and a 3-node as a sibling.

X

a

Y Z

b c d

⇒
Y

X

a b

Z

c d

⇐
Z

X Y

a b c d

In this case, the heights of the subtrees a, b, c, and d are the same.
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3. The hole has a 3-node as a parent and a 2-node as a sibling. There are two subcases:

(a) The first subcase involves subtrees a, b, and c whose heights are one less than that of subtree
d.

X Z

a

Y

b c

d
⇒

Z

X Y

a b c

d
⇐

Y Z

X

a b c

d

(b) The second subcase involves subtrees b, c, and d whose heights are one less than that of
subtree a. When the hole is in the middle, there may be ambiguity in terms of whether to
apply the right-hand rule of the first subcase or the left-hand rule of the second subcase. Either
application is OK.

X Y

a

b

Z

c d

⇒
X

a

Y Z

b c d

⇐
X Z

a

Y

b c d

4. The hole has a 3-node as a parent and a 3-node as a sibling. Again there are two subcases.

(a) The first subcase involves subtrees a, b, c, and d, whose heights are one less than that of
subtree e.

W Z

a

X Y

b c d

e
⇒

X Z

W

a b

Y

c d

e
⇐

Y Z

W X

a b c d

e

(b) The second subcase involves subtrees b, c, d, and e, whose heights are one less than that of
subtree a. When the hole is in the middle, there may be ambiguity in terms of whether to
apply the right-hand rule of the first subcase or the left-hand rule of the second subcase. Either
application is OK.

W X

a

b

Y Z

c d e

⇒
W Y

a

X

b c

Z

d e

⇐
W Z

a

X Y

b c d e
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2-3 Tree Deletion Example (Exercise)

Below is the start of an example of the deletion of the letters A L G O R I T H M S from the final
2-3 tree of the insertion example. It shows the result of deleting A L G. Complete the example by deleting
the remaining letters O R I T H M S in order.

I

G

A H

O S

L M R T delete→
A

I

G

H

O S

L M R T case 1→

I

G H

O S

L M R T

case 2→

O

I

G H L M

S

R T delete→
L

O

I

G H M

S

R T delete→
G

O

I

H M

S

R T
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