
CS231 Algorithms Handout # 8
Prof. Lyn Turbak March 8, 2022
Wellesley College Revised April 19, 2022

Comparison-based Sorts and Linear Sorting (Notes with Solutions)

Reading: CLRS 8.1–8.3

The Best Worst-Case Running Time for Comparison-Based Sorts

We can view comparison-based sorts as binary decision trees that process sets of arrays over n
distinct elements. For example:

Given n distinct elements, how many different arrays can we make with these elements (with no dupli-
cates)? (For example, consider {A, B, C}.)

n! =
∏n

i=1 = n · (n− 1) · (n− 2) · · · 3 · 2 · 1

So a decision tree must have this number of leaves (shown as permutations in the above picture).

What is the minimum height of a binary tree with L leaves?

d(log2(L))e. E.g. a binary tree with 1 leaf has height 0, with 2 leaves has height 1, with 3 to 4 leaves
has height 2, with 5 to 8 leaves has height 3, and so on. The above example binary decision tree with 6
leaves has height 3.

What is the minimum height of a decision tree for arrays of length n?

A decision tree for n elements has n! leaves, so has height d(log2(n!))e = d(lg(n!))e

Note that lg(n!) ≈ n · lg(n) via Stirling’s equation or calculus (see CLRS Exercise 8.1-2).

Key takeaway from this analysis: The worst-case running time of a comparison-based sort is
Ω(n · lg(n)).

1

Linear Sorting Algorithms

All comparison-based sorting algorithms have worst-case time Ω(n · lg(n)), and we know one sorting
algorithm (MergeSort) whose worst-case time is Θ(n · lg(n)). (We will see another — HeapSort —
next week.)

Yet there are linear sorting algorithms – algorithms with worst-case time Θ(n). How can this be? They’re
not comparison-based! They take advantage of some feature of the input. E.g.:

• The elements are integers in a restricted range, or easily convertible to integers in a restricted range
(e.g., the letters of the alphabet). Today we will focus on this situation.

• The elements have a special probability distribution. This is the key idea in Bucket Sort (CLRS
8.4), which will will not study.

Integer Bucket Sort

Problem: sort n integers taken from the range 1..k.

function IntegerBucketSort(A,B,k) . A is input array of length n containing keys in range [1..k].
. B is output array of length n.

Counts ← newArray(k, 0) . Create new array of length k in which every slot is filled with 0
for all num in A do . Find count of each number in A.

Counts[num]← Counts[num] + 1

p← 1 . p is a index in the output array B
for all num ∈ [1..k] do

for all ∈ [1..Counts[num]] do . is an unused variable in this for all loop,
. which just repeats the loop body Counts[num] times.

B[p]← num
p← p + 1

Exercise 1: For k = 6, A = 4 2 1 3 2 4 2 6 1 2 4, show Counts and B.

Counts is
index 1 2 3 4 5 6

value 2 4 1 3 0 1
and B is

index 1 2 3 4 5 6 7 8 9 10 11

value 1 1 2 2 2 2 3 4 4 4 6

Can A be the same as B in this algorithm?

Yes. After Counts is created, no information from A needs to be retained for populating B

2

Keys and Satellite Data

In practice, elements to be sorted are compound values/objects with multiple components/fields.
Example from CS111 sorting lecture:

[(’Ed’, ’Jones’, 18), # first name, last name, age

(’Ana’ ’Doe’, 25),

(’Ed’, ’Doe’, 18),

(’Bob’, ’Doe’, 25),

(’Ana’, ’Jones’, 18)]

In general, want to sort these objects by some field (known as the key) and the rest of the object
(sometimes called satellite data) moves with it. E.g., in the above example, we could sort the Python
tuples by first name, last name, or age.

Counting Sort (a.k.a. Distribution Counting)

Integer bucket sort has a problem when there is satellite data. E.g., suppose (k, d) pairs a key k with
a satellite data integer d :

(4,1) (2,1) (1,1) (3,1) (2,2) (4,2) (2,3) (6,2) (1,1) (2,4) (4,3)

(Here, it happens that the satellite data for a particular key is sorted left to right, but that’s just
“coincidence” to illustrate the stability property of CountingSort; see the next page.)

function CountingSort(A,B,k) . A is input array of length n containing keys in range [1..k].
. B is output array of length n.

Counts ← newArray(k, 0) . Create new array of length k in which every slot is filled with 0
for all elt in A do . Find count of each element key in A.

Counts[key(elt)]← Counts[key(elt)] + 1

for all key ∈ [2..k] do . Find partial sums of key counts in A.
Counts[key]← Counts[key] + Counts[key − 1]

for all p in [len(A)..1] do
B[Counts[key(A[p])]← A[p]
Counts[key(A[p])]← Counts[key(A[p])]− 1

Exercise 2: For k = 6 and A= (4,1) (2,1) (1,1) (3,1) (2,2) (4,2) (2,3) (6,1) (1,2) (2,4)

(4,3) modify the Counts array from Exercise 1 to calculate the partial sums and show the final contents
of the array B.

Counts is initially
index 1 2 3 4 5 6

value 2 4 1 3 0 1
but becomes

index 1 2 3 4 5 6

value 2 6 7 10 10 11
after

the partial sums step, and its slots are cleverly decremented as B is populated in order to fill the the
contiguous segment of slots “set aside” for each key in B from back to front. E.g., in the partial sums
version of Counts, slots 1–2 are allocated for pairs with key = 1; slots 3–6 are allocated for pairs with
key=2; slot 7 is allocated for the pair with key=3; slots 8–10 are allocated for pairs with key=4, and slot
11 is allocated for the pair with key=11. The final version of B is:
index 1 2 3 4 5 6 7 8 9 10 11

value (1,1) (1,2) (2,1) (2,2) (2,3) (2,4) (3,1) (4,1) (4,2) (4,3) (6,1)

3

Stability

A sorting algorithm is said to be stable if elements with the same key have the same relative order in
the input and output arrays.

Is CountingSort stable?

Yes. As illustrated in the above example, for each key that appears in at least one pair, the slots set
aside for that key in the output array B are filled from back to front by processing the pairs in A from
back to front. This guarantees that the relative order of pairs with the same key in A is preserved in B.

Would CountingSort be stable if the for all loop counted up rather than down?

No. If the for all loop populating B counted up rather than down, the slots set aside for a given key
in the output array B would still be filled back to front, but the relative order of the pairs would be
reversed.

Stability is an incredibly important sorting property, and is usually documented in APIs.

Other Properties of Counting Sort

Can A be the same as B in CountingSort ?

No. The original A is referenced throughout the part of CountingSort that populates B, so the two
arrays must be distinct for the algorithm to work correctly.

How much time does CountingSort take?

• The creation of the Counts array takes time Θ(k);

• The initial population of of the Counts array takes time Θ(n), where n = len(A).

• The partial sums step on Counts takes time Θ(k);

• The step that populates B takes time Θ(n);

• The sum of all the above steps is Θ(k) + Θ(n) = Θ(n + k). It’s necessary to keep n and k distinct
in this analysis to handle the situation where k depends on n. E,g., in some situations, it might be
that k = n2, in which case Θ(n + k) = Θ(n + n2) = Θ(n2), which most certainly is not linear!

How much space does Counting-Sort need?

It depends on what space is counted. Typically, space taken up by the input and output (in this case,
arrays of size n) is not charged to the algorithm, but space used internal to the algorithm is charged.
The main space used in the algorithm is the Counts array, which takes Θ(k) space.

4

Radix Sort

Problem: Suppose you have a machine that can perform a stable sort on the ith digit of a d-digit number.
How can you use the machine to sort a “pile” of n d-digit numbers?

Example:

443
124
232
431
132
123
321
211
121
441
122
442

sort by
last digit

=⇒

431
321
211
441
121
232
132
122
442
443
123
124

sort by
middle digit

=⇒

211
321
121
122
123
124
431
232
132
441
442
443

sort by
first digit

=⇒

121
122
123
124
132
211
232
321
431
441
442
443

To avoid lots of intermediate piles, process digits right-to-left, not left-to-right!

This approach to sorting is known as RadixSort.

function RadixSort(A,d) . Permute the elts of A to be in ascending sorted order by d “digits”
for all j ∈ [1..d] do

StableSort(A,j) . Can use any stable sort that uses “digit” j as a key

Any stable sort will do. Counting-Sort is a good candidate since it’s Θ(n + k).

What is the running time for sorting n d-digit numbers, where digits are in the range [1..k]?

Θ(d · (n + k))

Note:

• If d is constant and k = O(n), then running time of Radix-Sort is Θ(n).

• In many applications, d = logk(n), so the sort ends up being Θ(n · logk(n)) for a given k.

5

