
CS231 Algorithms Handout # 2
Prof. Lyn Turbak February 11, 2022
Wellesley College Revised February 20, 2022

Loop Invariants and Mutable Array Sorting

• [2022/02/20 7:30pm] Modulo bugs that might be found and may need to be fixed, this is the final version of
the Loop Invariant handout.

Proving Correctness

We want to be able to prove that an algorithm is correct – i.e., that it satisfies the specification of a
solution for the problem being solved.

The divide/conquer/glue (DCG) problem solving strategy naturally leads to algorithms involving recur-
sive functions. Proving such functions correct can be done with induction — something we’ll focus on in
the next lecture.

But many algorithms involve loops. How do we prove loop-based algorithms correct? A proof technique
for this common situation is called loop invariants.

Loop Invariants

The loop invariants proof technique is a specialization of proof-by-induction for iterations (as in
loops or tail-recursive functions). Given a loop with state variables s1, . . . , sk, the technique involves the
following steps. We’ll use the notation sj(i) to denote the value of state variable sj at the beginning of
the ith iteration of the loop. We’ll assume the iterations are 1-index — i.e., for the first iteration, i = 1
(not 0).

1. Specify one or more invariants that hold among the state variables of the loop. Formally,
this is a k-ary relation LI(s1, . . . , sk).

2. Show that the loop invariants hold the first time the loop is entered. I.e., it is necessary
to show that LI(s1(1), . . . , sk(1)) holds.

3. Show that if the loop invariants hold at the beginning of iteration i, then they hold
at the beginning iteration i + 1, i.e., after the body of the loop has executed, regardless of the
path taken through the body. Formally, it must be shown that for all i, LI(s1(i), . . . , sk(i)) implies
LI(s1(i + 1), . . . , sk(i + 1)).

4. Show that that the loop terminates. This is usually done by defining metric function
M(s1(i), . . . , sk(i)) returning a nonnegative integer that characterizes the size of the problem at
iteration i, and showing that the metric strictly decreases at every iteration. Since the function
returns a nonnegative integer and decreases at every iteration, it must eventually reach 0, at which
point the loop terminates.

5. Show that the terminating state satisfies the desired correctness properties. The ter-
minating state corresponds to the beginning of an iteration that is not executed. Formally, if the
loop terminates when condition at the beginning of the tth iteration is tested, it must be shown
that LI(s1(t), . . . , sk(t)) implies the desired correctness property.

1



Example: while-loop based Factorial Program

Here we illustrate the loop invariant technique in the context of a while loop based version of a
factorial function. (This is the same as Example 3 in the Appendix to PS1.)

function FactWhile(n) . Return n!, calculating it via a while loop
prod ← 1
num ← n
while num > 0 do

prod ← num · prod
num ← num − 1

return prod

Below is an iteration table for the while loop in the invocation FactWhile(5). The table has columns
indexed by state variables that define the state of the execution of the loop. We assume there is an
implicit index variable i that counts the iterations of the loop, i.e., the number of times the condition in
the while loop is tested. We will refer to this implicit variable in our analysis. The rows of the table
show the values of the state variables at the beginning of the iteration i — i.e., before the loop test is
performed and and body of the loop is (potentially) executed.

i num prod

1 5 1

2 4 5

3 3 20

4 2 60

5 1 120

6 0 120

The state variables num and prod are effectively functions of the implicit index variable i. We write numi

and prod i for the values of these variables at iteration i. E.g., in the above table, num4 = 2 and prod4 =
60.

Next we show the five parts of a general loop invariant proof in the context of this example.

2



FactWhile: Specify the Loop Invariants

In this example, there is one loop invariant (but in general, there might be several).

(FactWhileLI) numi! · prod i = n! (where n is the parameter of FactWhile).

To intuitively understand this invariant, let’s verify it in each row of the iteration table:

i num prod numi! · prod i

1 5 1 5! · 1 = 120 = 5!

2 4 5 4! · 5 = 120 = 5!

3 3 20 3! · 20 = 120 = 5!

4 2 60 2! · 60 = 120 = 5!

5 1 120 1! · 120 = 120 = 5!

6 0 120 0! · 120 = 120 = 5!

You can think of it this way: when the iteration begins, all information about what we wish to compute
is contained in num1 = 5 (i.e., we want to calculate 5!) and no information is contained in prod1 = 1 (the
identify element for multiplication). As the iteration proceeds, it ”transfers” information from num to
prod so that, at the end, no information is in num6 = 1 (the identity element for multiplication) and all
information is in prod6 = 120 = 5!. From this perspective, the goal of the loop is to transfer information
from some state variables to others in such a way that the desired answer is in one or more state variables
at the end of the loop.

FactWhile: Show that the Invariants Hold on Entry to Loop

Proof: Our one invariant holds before the first loop iteration is executed:

num1! · prod1 = n! · 1 = n! ♥

FactWhile: Show that Each Loop Iteration Preserves the Invariants

In other words, we need to show that if the invariant holds at the beginning of iteration i (before the
conditional test is performed and the body is potentially executed), then it holds at the end of the
iteration (after the body has been executed), which is the same as saying it holds at the beginning of
iteration i + 1.

Proof In the case of FactWhile, assume that numi! · prod i = n!. (Think of this as being similar to the
inductive hypothesis (IH) in a proof by induction.) We want to show that numi+1! · prod i+1 = n!. From
the definition of FactWhile, we have the following facts:

(Update num) numi+1 = numi − 1

(Update prod) prod i+1 = numi · prod i

We can combine these facts to yield the desired proof:

numi+1! · prod i+1

= (numi − 1)! · (numi · prod i) by (Update num) and (Update prod)
= numi! · prod i by the definition of factorial
= n! by the assumption that (FactWhileLI) holds for iteration i ♥

3



FactWhile: Show Termination

When a loop uses a while loop as opposed to a for loop, we need to prove that it will eventually
terminate, because it may not be apparent that the the number of iterations can be bounded in advance.

To show termination, we often define a metric function M on all the state variables, and show that
the value of this function decreases on every iteration until some end point.

Proof

In the case of FactWhile, we define M(numi, prod i) = numi. Since numi+1 = numi − 1, M clearly
decreases by 1 with each iteration. Assuming that n is nonnegative, num1 is nonnegative, and by the
definition of FactWhile, num never goes below 0. Therefore, the while loop in FactWhile terminates
at the beginning of iteration n + 1 (e.g., i = 6 in the iteration tables shown above). ♥

FactWhile: Show Desired Properties

We wish to show that FactWhile(n) returns n!.

Proof

When FactWhile terminates in the (n + 1)th iteration, numn+1 = 0. So:

prodn+1 = 0! · prodn+1 because 0! = 1
= numn+1! · prodn+1 because numn+1 = 0
= n! by the loop invariant (FactWhileLI)

Therefore, the result returned by FactWhile(n), which is the final value of the state variable prod , is
indeed n!. ♥

Proving Correctness of Sorting Algorithms on Mutable Arrays

Loop invariants are commonly used to reason about algorithms involving mutable arrays. We will
now consider how to prove the correctness of sorting algorithms on mutable arrays.

We’ll assume 1-indexed mutable fixed-length arrays that hold simple values like numbers, characters,
or strings, but we could easily adapt the values to be objects with a key used for sorting.

Given a length-n array whose initial state is Ainit, the goal of a sorting algorithm is to change the
state of the array to Afinal such that:

1. The elements of Afinal are the same as Ainit, modulo their ordering.

2. The elements of Afinal are sorted — i.e., for all i ∈ [1..n− 1], A[i] ≤ A[i + 1]

4



Example: Insertion Sort on Mutable Arrays

Loop invariants are commonly used to reason about algorithms involving mutable arrays. Here we
apply the loop invariant technique to insertion sort, an easy-to understand sorting algorithm:

function InsertionSort(A) . Sort the elements of 1-indexed mutable array A
for all h ∈ [2..len(A)] do

Insert(A, h)

function Insert(A, k) . Assume A[1..(k − 1)] is sorted and k ≤ len(A)
. Modify A so that A[1..k] has the same elements as when entered, but is sorted.

j ← k
while j ≥ 2 and A[(j − 1)] > A[j] do

Swap(A, j − 1, j)
j ← j − 1

function Swap(A, p, q) . Swap the contents of slots indexed p and q within array A
A[p], A[q]← A[q], A[p] . Parallel assignment to express the swap.

Depiction of Insertion Sort

S DU N O R T E

S DU N O R T E

S DUN O R T E

S DUN O R T E

S DUN O R T E

S DUN O R T E

S DUN O R T E

S DUN O R TE

SD UN O R TE

5



Swap-based Sorting Algorithms Preserve Elements

InsertionSort is an example of a swap-based sorting algorithm, in which all changes to the array
are made by swapping elements at two given indices.

Swap-based algorithms obviously preserve the elements in an array, thereby satisfying the first cor-
rectness property of an array sorting algorithm: “The elements of Afinal are the same as Ainit, modulo
their ordering.”

This property needs more attention when other approaches are used to reorder the array elements.

Game Plan for Proving Correctness of Sorting for InsertionSort

We just need to focus on sorting correctness property 2: “The elements of Afinal are sorted — i.e.,
for all i ∈ [1..n− 1], A[i] ≤ A[i + 1]”

There are two loops in InsertionSort: one in Insert and one in InsertionSort itself. We’ll use
loop invariants on both loops in order to prove the result of InsertionSort is sorted.

Insert: Specify the Loop Invariants

Let Ai denote the contents of array A at the beginning of the ith iteration of the while loop (where
i starts at 1) and ji denote the value of state variable j at the beginning of the ith iteration.

Here are three1 loop invariants for Insert (all of which must hold at every iteration)

InsertLI1 Ai[1..(ji − 1)] = A1[1..(ji − 1)]
(and so Ai[1..(j1 − 1)] is sorted, because A1[1..(k − 1)] is assumed to be sorted). Note that two
array segments are considered to be equal iff (1) they have the same number of elements and (2)
the elements at the corresponding locations are equal.

InsertLI2 Ai[(ji + 1)..k] = A1[ji..(k − 1)]
(and so Ai[(j1 + 1)..k] is sorted, because A1[1..(k − 1)] is assumed to be sorted)

InsertLI3 if ji < k, then Ai[ji] < Ai[ji + 1]

1I originally presented two invariants, but for reasons to be explained, those were insufficient and you really need these
three.

6



Insert: What Do We Know?

When doing loop invariant proofs (or really any proofs) it’s a good idea to carefully write down in
one place all the facts that you know that will be important for the proof. It’s also a good idea to give
each fact a name that you can refer to in the justification steps of the proof. If you don’t use one of the
named facts at some point in your proof, this is a strong indication that your proof is missing something!

In the case of the loop invariant proof for the correctness of Insert, here’s what we know:

From the Insert function:

(Init j) j1 = k

(Update j) ji+1 = ji − 1

(Swap1) Ai+1[ji] = Ai[ji−1] (if Ai[ji−1] > Ai[ji]))

(Swap2) Ai+1[ji−1] = Ai[ji] (if Ai[ji−1] > Ai[ji]))

(NoSwap) Ai+1[h] = Ai[h] (if h 6∈ {ji−1, ji}). I.e, elements at unswapped indices remain the same.

From the loop invariants:

(InsertLI1 Assumption) Ai[1..(ji − 1)] = A1[1..(ji − 1)]

(InsertLI2 Assumption) Ai[(ji + 1)..k] = A1[ji..(k − 1)]

(InsertLI3 Assumption) if ji < k, then Ai[ji] < Ai[ji + 1]

In the above facts, indices have been highlighted in a different color to emphasize them. Being careful
with indices in a loop invariant proof is a key element of success!

Now that we have all the facts, the idea is to show each step of a loop invariant proof by using the
facts.

7



Insert: Show that the Invariants Hold on Entry to Loop

It’s good practice to begin a proof by (1) clearly stating all the facts you know (done above) and (2)
clearly stating what you want to prove.

Here we want to prove each of the three loop invariants holds when i = 1, so we substitute i for 1 in
the equality defining each loop invariant:

InsertLI1: Want to prove A1[1..(j1 − 1)] = A1[1..(j1 − 1)]

InsertLI1: Proof

This proof is trivial, since the desired equality is clearly true when 1 is substituted for i. ♥

InsertLI2: Want to prove A1[(j1 + 1)..k] = A1[j1..(k − 1)]

InsertLI2: Proof

A1[(j1 + 1)..k] = A1[(k + 1)..k] (Init j)
= an empty array segment because (k + 1) > k in A1[(k + 1)..k]
= A1[k..(k − 1)] because k > (k − 1) in A1[k..(k − 1)]
= A1[j1..(k − 1)] (Init j) ♥

InsertLI3: Want to prove if ji < k, then Ai[ji] < Ai[ji + 1]

InsertLI3: Proof

ji = k (by (Init j)) and k 6< k, so the “if” test in “if ji < k, then ...” is false. By the rules of logic, in
the implication expression“if p then q” (also written p =⇒ q), if the antecedent p is false, the implication
expression itself is considered true (and is said to be “vacuously true” in this case). For example, the
logical expression “if it’s raining I use an umbrella” is vacuously true when it’s not raining, whether or
not I am using an umbrella. So InsertLI3 is true when i = 1. ♥

8

https://en.wikipedia.org/wiki/Vacuous_truth


Insert: Show that Each Loop Iteration Preserves the Invariants

Here we want to prove for each of the three loop invariants that if it holds at the beginning of iteration
i, if the loop body is executed, then it holds at the beginning of iteration i + 1 (which is the same as
saying it holds at the end of iteration i).

The facts (InsertLI1 Assumption), (InsertLI2 Assumption), and (InsertLI3 Assumption) will play an
important role in these proofs:

InsertLI1: Want to prove Ai+1[1..(ji+1 − 1)] = A1[1..(ji+1 − 1)]

InsertLI1: Proof

Ai+1[1..(ji+1 − 1)] = Ai+1[1..((ji − 1)− 1)] (Update j)
= Ai+1[1..(ji − 2)] by arithmetic
= Ai[1..(ji − 2)] by (NoSwap) at each index in [1..(ji-2)]
= A1[1..(ji − 2)] (InsertLI1 Assumption) on all but last element of Ai[1..(ji − 1)]
= A1[1..((ji − 1)− 1)] by arithmetic
= A1[1..(ji+1 − 1)] (Update j) ♥

InsertLI2: Want to prove Ai+1[(ji+1 + 1)..k] = A1[ji+1..(k − 1)]

For this proof we’ll introduce an operator ⊕ for concatenating two contiguous array segments in a
given array A: A[p..q]⊕A[(q + 1)..r] denotes the array segment A[p..r].

InsertLI2: Proof

Ai+1[(ji+1 + 1)..k] = Ai+1[((ji − 1) + 1)..k] (Update j)
= Ai+1[ji..k] by arithmetic
= Ai+1[ji]⊕Ai+1[(ji + 1)..k] by definition of ⊕
= Ai[ji − 1]⊕Ai+1[(ji + 1)..k] (Swap1)
= Ai[ji − 1]⊕Ai[(ji + 1)..k] by (NoSwap) at each index in [(ji+1) .. k]
= Ai[ji − 1]⊕A1[ji..(k − 1)] (InsertLI2 Assumption)
= A1[ji − 1]⊕A1[ji..(k − 1)] (InsertLI1 Assumption) at Ai[ji-1]
= A1[(ji − 1)..(k − 1)] by definition of ⊕
= A1[ji+1..(k − 1)] (Update j) ♥

InsertLI3: Want to prove if ji+1 < k, then Ai+1[ji+1] < Ai+1[ji+1 + 1]

InsertLI3: Proof

For i ≥ 1, if iteration i is reached and the loop is executed, ji+1 < k (by (Update j)), so we need to
show Ai+1[ji+1] < Ai+1[ji+1 + 1] for all such i.

Ai+1[ji+1] = Ai+1[ji − 1] (Update j)
= Ai[ji] (Swap2)
< Ai[ji − 1] by (Swap2) precondition
= Ai+1[ji] (Swap 1)
= Ai+1[(ji − 1) + 1] arithmetic
= Ai+1[ji+1 + 1] (Update j) ♥

9



Insert: Show Termination

We need to show that the while loop in Insert cannot run infinitely — i.e., it must terminate in a
finite number of iterations.

Proof

In Insert, the while loop continuation condition is j ≥ 2 and A[(j − 1)] > A[j]. We know from (Init j)
that j is intialized to k (i.e., j1 = k) where k is assumed to be an integer. There are two cases:

Case 1: k < 2 In this case, the while loop continuation condition is initially false because j1 6≥ 2. So
the loop body is never executed in this case, and the loop terminates.

Case 2: k ≥ 2 In this case, by (Update j), we know the value of j is decremented by 1 on each iteration
of the loop, and so j must reach a value < 2 in a finite number of steps, terminating the loop.
The loop can terminate even earlier in the case where Ai[ji − 1] ≤ Ai[ji] at the beginning of some
iteration i. ♥

10



Insert: Show Desired Properties

The key property of Insert that we wish to show is that when the while loop terminates at final
iteration f (i.e., the iteration for which the while loop continuation condition becomes false), the array
segment Af [1..k] is sorted.

Proof

There are two cases, based on the reason why the loop terminated:

Case 1: jf < 2: In this case, there are two subcases:

Subcase 1: k < 2 : In this subcase, the while loop continuation condition is initially false because
j1 6≥ 2. So the loop body is never executed in this case, and the initial array A is unchanged.
But since k < 2, A is either a singleton array or an empty array, both of which are sorted, so
we verify Af [1..k] is sorted in this subcase.

Subcase 2: k ≥ 2: In this subcase, the while loop continuation condition was true at least once.
and the loop terminates when the value initially at A1[k] has bubbled down to the position
Af [1]. In this subcase jf = 1 and we know that:

1. Af [2..k] = Af [(jf + 1)..k] by arithmetic
= A1[jf ..(k − 1)] by (InsertLI2 Assumption)
= A1[1..(k − 1)] because jf = 1 in this case

2. Af [1] = Af [jf ] because jf = 1 in this case
< Af [jf + 1] by (InsertLI3 Assumption) and the fact that jf < k
= Af [2] because jf = 1 in this case

By the preconditions on Insert, A1[1..(k − 1)] is assumed to be sorted. From (1), we deduce
that Af [2..k] is sorted. Then from (2), we can deduce that Af [1..k] is sorted.

Case 2: jf ≥ 2 and Af [jf − 1] ≤ Af [jf ]: In this case, the loop stops when the element at Af [jf ] can’t
bubble down any further. We know that

1. Af [1..(jf − 1)] = A1[1..(jf − 1)] (InsertLI1 Assumption)

2. Af [jf ] < Af [jf + 1] (InsertLI3 Assumption)

3. Af [(jf + 1)...k] <= Af [jf ..(k − 1)] (InsertLI2 Assumption)

Since A1[1..(k − 1)] is assumed to be sorted, Af [1..(jf − 1)] is sorted (by (1)) a and Af [(jf + 1)...k]
is sorted (by (3)). By (2), Af [jf ] < Af [jf + 1], and by the assumption of for this case, Af [jf − 1] ≤
Af [jf ], so we conclude that Af [1..k] is sorted. ♥

11



Can Weaker Loop Invariants Work for Insert?

The three loop invariants for Insert seem awfully complicated. Can’t they be simplified? For
example, here are two simpler loop invariants:

InsertLI1′ Ai[1..(ji − 1)] is sorted.

InsertLI2′ Ai[ji..k] is sorted.

If we try to use the loop invariant machinery with the above invariants, we hit a snag. When we swap
Ai[(ji−1)] and Ai[ji], we know that Ai[(ji−1)] > Ai[ji], but we don’t know that Ai[(ji−1)] ≤ Ai[(ji +1)],
and so can’t conclude that Ai+1[(ji+1..k] is sorted! We need the additional information that Ai[(ji−1)] =
A1[(ji− 1)] and Ai[(ji + 1)] = A1[ji] in conjunction with the fact that A1[1..(k− 1)] is sorted to make this
part of the proof go through.

Loop Invariant and Known Fact for InsertionSort

Now that we know that Insert is correct, we’re ready to prove that InsertionSort works as adver-
tised. This is another loop invariant proof, but this one is much simpler than the loop invariant proof for
Insert.

Recall that InsertionSort is defined as:

function InsertionSort(A) . Sort the elements of 1-indexed mutable array A
for all h ∈ [2..len(A)] do

Insert(A, h)

Here is the loop invariant for InsertionSort

(InsertionSortLI] At the beginning of iteration i (1-indexed), A[1..min(i, len(A)]] is sorted

Why does the loop invariant use min(i, len(A)) rather than just i? As we’ll see below, in the special case
where A is empty, A[1..1] isn’t defined, but A[1..min(i, len(A))] = A[1..min(i, 0)] = A[1..0] is defined as
the empty array.

And here are the key facts we’ll use use in our proof:

(Value of h) hi = i + 1, because h is initialized to 2 and is incremented thereafter.

(Insert Preserves Sortedness) If Ai[1..i] is sorted, and i+ 1 ≤ len(A), then Ai+1[1..(i+ 1)] (which is
state of the first i + 1 slots of A after the call Insert(A, i + 1)) is sorted.

12



InsertionSort: Show that the Invariants Hold on Entry to Loop

Proof: When i = 1, there are two cases:

Case 1: len(A) = 0: In this case, A[1..min(i, len(A))] = A[1..min(1, 0)] = A[1..0] (an empty array),
which is sorted.

Case 2: len(A) ≥ 0: In this case, A[1..min(i, len(A))] = A[1..min(1, 1)] = A[1..1] (an array with 1
element), which is sorted. ♥

InsertionSort: Show that Each Loop Iteration Preserves the Invariants

Here we show that if (InsertionSortLI) holds at the beginning of loop iteration i, it holds at the
beginning of iteration i + 1, which is the same as saying it holds at the end of iteration i (after the loop
body has been executed).

That is, we wish to show that if Ai[1..min(i, len(A)] is sorted, and the body of the loop is executed,
then Ai+1[1..min(i + 1, len(A)] is sorted.

We also know that for the body of the loop to be executed:

i < i + 1 by arithmetic
= hi (Value of h)
≤ len(A) by for all loop in body of InsertionSort

So we conclude min(i, len(A)) = i, and we can simplify the statement of what we wish to show:

if Ai[1..i] is sorted, and the body of the loop is executed, then Ai+1[1..(i + 1)] is sorted.

Proof

Assume Ai[1..i] is sorted. If the body of the loop is executed, we know from above that i + 1 = hi ≤
len(A). By (Insert Preserves Sortedness), we can conclude that Ai[1..(i + 1)] is sorted. ♥

InsertionSort: Show Termination

Proof: Because InsertionSort is written in terms of a for all loop, it clearly terminates at the end
of iteration where hi = len(A), which is when i = len(A) − 1. This is the same as the beginning of the
iteration where i = len(A). ♥

InsertionSort: Show Desired Properties

Proof: When the for all loop terminates at the beginning of iteration i = len(A), by (InsertionSortLI),
A[1..min(len(A), len(A)] = A[1..len(A)] is sorted. ♥

13



A version of Insert that does not use Swap

We conclude our discussion of InsertionSort by considering an alternative version of Insert that
does not use Swap:

function Insert′(A, k) . Assume A[1..(k − 1)] is sorted and k ≤ len(A)
. Modify A so that A[1..k] has the same elements as when entered, but is sorted.

insertVal ← A[k]
j ← k
while j ≥ 2 and A[(j − 1)] > A[j] do

A[j]← A[j − 1]
j ← j − 1

A[j]← insertVal

From an implementation perspective, Insert′ is preferable to Insert, because it uses fewer assign-
ments to array slots. However, it’s a bit more challenging to proof correct. Why? For simplicity, assume
that the elements in A[1..k] are distinct. Then after execution of the first iteration of the while loop
and before the loop terminates, the array segment Ai[1..k] does not contain insertVal but does contain
duplicated elements at indices ji and ji+1. For example, when A1[1..5] is N O S U R, A2 has a duplicate
of U and A3 has a duplicate of S.

i A[1] A[2] A[3] A[4] A[5]

1 N O S U R

2 N O S U U

3 N O S S U

Only after the while loop terminates is the S in A3[3] replaced by insertVal = R to yield the result array
values N O R S U:

So it’s not as obvious as with Insert that the the array A after Insert′ returns contains exactly the
same elements as the array A when Insert′ is called.

Proving this fact and the sortedness of the array returned by Insert′ requires changing to the loop
invariants. InsertL1 and InsertL2 are the same as before, but we need to change InsertLI3 to InsertLI3′:

InsertLI1 Ai[1..(ji − 1)] = A1[1..(ji − 1)]
(and so Ai[1..(j1 − 1)] is sorted, because A1[1..(k − 1)] is assumed to be sorted). Note that two
array segments are considered to be equal iff (1) they have the same number of elements and (2)
the elements at the corresponding locations are equal.

InsertLI2 Ai[(ji + 1)..k] = A1[ji..(k − 1)]
(and so Ai[(j1 + 1)..k] is sorted, because A1[1..(k − 1)] is assumed to be sorted)

InsertLI3′ if ji < k, then A1[k] = insertVal < Ai[ji + 1]. (Since the value of insertVal doesn’t change
during the loop, we don’t need to subscript it.)

We do not give a proof here, but encourage the reader to think about why the modified loop invariant
InsertLI3′ is sufficient to show both that(1) Insert′ preserves the array elements in A[1..k] and (2)
Insert′ guarantees that A[1..k] is sorted when it returns.

14


