Dynamic Programming

Reading: Section 6.1, 6.2 and 6.4
Weighted Interval Scheduling

- Set of n jobs to be executed
- Each job has a start time and a finish time: $s_1, \ldots, s_n, f_1, \ldots, f_n$
- Each job has a weight or value v_i
- Jobs cannot run in parallel
 - Jobs are compatible if their time does not overlap

- **Goal:** Find maximum-weight set of compatible jobs
Complexity of Solution

BRUTE-FORCE \((n, s_1, \ldots, s_n, f_1, \ldots, f_n, w_1, \ldots, w_n)\)

Sort jobs by finish time and renumber so that \(f_1 \leq f_2 \leq \ldots \leq f_n\).
Compute \(p[1], p[2], \ldots, p[n]\) via binary search.

RETURN \(\text{COMPUTE-OPT}(n)\).

COMPUTE-OPT \((j)\)

IF \((j = 0)\)

RETURN \(0\).

ELSE

RETURN \(\max\ \{\text{COMPUTE-OPT}(j-1), w_j + \text{COMPUTE-OPT}(p[j])\}\).
Memoization

- Top-down approach
 - Cache result of each subproblem

\[\text{TOP-DOWN}(n, s_1, \ldots, s_n, f_1, \ldots, f_n, w_1, \ldots, w_n)\]

Sort jobs by finish time and renumber so that \(f_1 \leq f_2 \leq \ldots \leq f_n\).

Compute \(p[1], p[2], \ldots, p[n]\) via binary search.

\(M[0] \leftarrow 0.\) \hspace{1cm} \text{(global array)}

\text{RETURN} \ M\text{-COMPUTE-OPT}(n).

\text{M-COMPUTE-OPT}(j)

\text{IF (}M[j]\text{ is uninitialized)}

\[M[j] \leftarrow \max \{ \text{M-COMPUTE-OPT}(j-1), w_j + \text{M-COMPUTE-OPT}(p[j]) \}.\]

\text{RETURN} \ M[j].\]
Iteration over Subproblems

- Bottom-up approach

\[\text{BOTTOM-UP}(n, s_1, \ldots, s_n, f_1, \ldots, f_n, w_1, \ldots, w_n) \]

Sort jobs by finish time and renumber so that \(f_1 \leq f_2 \leq \ldots \leq f_n \).
Compute \(p[1], p[2], \ldots, p[n] \).
\(M[0] \leftarrow 0. \)

For \(j = 1 \) to \(n \)
\[M[j] \leftarrow \max \{ M[j-1], w_j + M[p[j]] \} \]
Subset Sum

Problem. Given \(n \) jobs where job \(i \) requires \(\mathcal{W}_i \) minutes of time and a budget \(W \).

- Find subset \(S \) that maximizes \(\sum_{i \in S} w_i \) and has \(\sum_{i \in S} w_i \leq W \).
Subset Sum

Problem. Given n jobs where job i requires w_i minutes of time and a budget W.

- Find subset S that maximizes $\sum_{i \in S} w_i$ and has $\sum_{i \in S} w_i \leq W$.

- Ideas?
- What should the recurrence look like?
Knapsack Problem

Problem. Given n items where item i has value v_i and weight w_i, and limit is W.

- Find subset S that maximizes $\sum_{i \in S} v_i$ and has $\sum_{i \in S} w_i \leq W$.

- How does this problem relate to Subset Sum?