Graphs (cont.)

Reading: Sections 3.3, 3.5 and 3.6
Graph Traversal

- **Breadth-first Search**
 - Traverse graph in layers
 - Find shortest distance from node s to all other nodes in the connected component

- **Depth-first Search**
 - Traverse graph by going as deeply as possible
 - Find a path from node s to all other nodes in the connected component
Implementation

Maintain set of *explored* and *discovered* nodes

- Explored = have seen this node and explored its outgoing edges

- Discovered = have seen the node, but not explored its outgoing edges.
Graph Traversal

L = data structure of discovered nodes

Traverse(s)
Put s in L

while L is not empty do
Take a node v from L
if v is not marked "explored" then
Mark v as "explored"
for each edge (v, w) incident to v do
Put w in L
end for
end if
end while

● BFS?
● DFS?
● Neither?
BFS implementation

L = queue of discovered nodes (FIFO)

Traverse(s)
Put s in L

while L is not empty do
 Take a node v from L
 if v is not marked "explored" then
 Mark v as "explored"
 for each edge (v, w) incident to v do
 Put w in L
 end for
 end if
end while

● BFS?
● How can we get tree?
● Running time
BFS properties

Claim. Let T be a breadth-first search tree, let u and v be nodes in T belonging to layers L_i and L_j, respectively. If (u,v) is an edge in G, then i and j differ by at most 1.

Claim. For each $j \geq 1$, layer L_j produced by BFS consists of all nodes at distance exactly j from s. There is a path from s to t if and only if t appears in some layer.
DFS implementation

L = stack of discovered nodes (LIFO)

Traverse(s)
Put s in L

while L is not empty do
 Take a node v from L
 if v is not marked “explored” then
 Mark v as “explored”
 for each edge (v, w) incident to v do
 Put w in L
 end for
 end if
end while

● DFS?
● How can we get tree?
● Running time
DFS properties

Claim. Let T be a depth-first search tree, let u and v be nodes in T, and let (u,v) be an edge of G that is not an edge of T. Then one of u or v is an ancestor of the other.
Connected Components

Def. The connected component $C(v)$ of node v is the set of all nodes with a path to v.

Claim. For any two nodes u and v either $C(u) = C(v)$, or $C(u)$ and $C(v)$ are disjoint.

- Can we use traversals to find connected components?
Direction Matters
Directed Graphs

- Set of nodes V

- Set of ordered pair of nodes (edges) E

- *Important.* the existence of a path from s to t does not imply there is a path from t to s
Connectivity in Directed Graphs

- G is *strongly connected* if for any nodes u, v in G, there is a path from u to v and path from v to u.

- *Strongly connected component* containing vertex s is the set of all nodes with paths to and from s.

- Graph traversals?
Directed Acyclic Graphs (DAG)

Def.: A DAG is a directed graph that contains no directed cycles.

Def.: A topological order of a DAG is an ordering of its nodes v_1, v_2, \ldots, v_n so that for every edge (v_i, v_j) we have $i < j$.

![Directed Acyclic Graphs Diagram](image)
Dependency Graph on DAG

- Usually reflect dependencies or requirements
 - I.e., Assembly lines, Supply lines, Organizational charts, …

- Understanding dependencies requires “topological sorting”
Topological Sorting Algorithm

TPsort(G)

while there are nodes remaining do
 Find a node v with no incoming edges
 Place v next in the order
 Delete v and all of its outgoing edges from G
end while