Graphs (cont.)

Reading: Sections 3.3, 3.5 and 3.6
Topological Sorting Algorithm

TPsort(G)

while there are nodes remaining do
 Find a node v with no incoming edges
 Place v next in the order
 Delete v and all of its outgoing edges from G
end while
Why Does It Work?

Theorem: Graph \(G \) is a DAG if and only if \(G \) has a topological ordering.

Claim \(_1\): In every DAG \(G \), there is a node \(v \) with no incoming edges.

Claim \(_2\): If \(G \) has a topological ordering, then \(G \) is a DAG.
Running Time

- Maintain the following information:
 - For each node, the current number of incoming edges - array $in[v]$
 - Set of remaining nodes with no incoming edges - S
Running Time

- Maintain the following information:
 - For each node, the current number of incoming edges - array $in[v]$
 - Set of remaining nodes with no incoming edges - S

- Initialization: ??

- Update: to delete v
 - remove v from S
 - decrement $in[u]$ for all edges from v to u;
 - Add u to S if $in[u]$ hits 0
 - $O(1)$ per edge
Running Time

- Maintain the following information:
 - For each node, the current number of incoming edges - array $in[v]$
 - Set of remaining nodes with no incoming edges - S

- Initialization: ??

- Update: to delete v
 - remove v from S
 - decrement $in[u]$ for all edges from v to u;
 - Add u to S if $in[u]$ hits 0
 - $O(1)$ per edge

- Running time: ??
Greedy Algorithms
Coin Change

Problem: You work as a cashier and need to give back change once in a while. Your goal is to do that using the fewest number of coins possible. Assume that you have as much coins as you need from a penny to a dollar.

● What is the solution if change is $0.78? How about $2.56?

● What algorithm did you use to find the solution?

● Would your algorithm work if the values of the coins were different?
Greedy Approach

- It builds up a solution in small steps.

- It chooses a decision at each step to optimize some underlying criterion.

- There can be different greedy algorithms for the same problem, each one locally, incrementally optimizing some different measure on its way to a solution.

- When a greedy algorithm succeeds in solving a nontrivial problem optimally, it typically implies something interesting and useful about the structure of the problem.
Review
• Stable Matching
 ○ What is a stable matching?
 ○ Different notions of instability
 ○ Gale-Shapley algorithm
 ■ Termination/Running time
 ■ Correctness
• Asymptotic Notation
 ○ Definition of bigO, bigOmega, bigTheta
 ○ How is it used to compare algorithms?
• Graphs
 ○ Definitions, Representation (undirected and directed)
 ○ Search
 ○ Connectivity
 ○ Topological sorting