Interval Scheduling

Reading: Section 4.1 and 4.2
Problem 1

- Set of n jobs to be executed
- Each job has a start time and a finish time: $s_1, \ldots, s_n, f_1, \ldots, f_n$
- Jobs cannot run in parallel
 - Jobs are compatible if their time does not overlap

Goal: Find maximum set of compatible jobs
Greedy Approach

- Simple rule to select first job
- Eliminate incompatible remaining jobs
- Repeat
Greedy Approach

- How should we pick the next job to schedule?
 - Earliest start time
 - Shortest interval
 - Fewest conflicts
 - Earliest finish time

- Exercise
Algorithm 1

Initially let R be the set of all requests, and let A be empty

While R is not yet empty
 Choose a request $i \in R$ that has the smallest finishing time
 Add request i to A
 Delete all requests from R that are not compatible with request i
EndWhile

Return the set A as the set of accepted requests

Running time: ??
Problem 2

- Set of n jobs to be executed
- Each job has a deadline and an execution time: $d_1, \ldots, d_n, t_1, \ldots, t_n$
- Jobs cannot run in parallel
- All jobs must be executed

Goal: Find scheduling that minimizes maximum lateness
Greedy Approach

- How should we order jobs?
 - Increasing execution time
 - Slack time
 - Earliest deadline
Algorithm 2

Order the jobs in order of their deadlines
Assume for simplicity of notation that \(d_1 \leq \ldots \leq d_n \)
Initially, \(f = s \)
Consider the jobs \(i = 1, \ldots, n \) in this order
 Assign job \(i \) to the time interval from \(s(i) = f \) to \(f(i) = f + t_i \)
 Let \(f = f + t_i \)
End
Return the set of scheduled intervals \([s(i), f(i)]\) for \(i = 1, \ldots, n \)