Lecture 11 – Greedy algorithms

Reading: KT Section 4.1

Greedy algorithms

• An algorithm is greedy if it builds up a solution in small steps,
 • choosing a decision at each step myopically to optimize some underlying
criterion.

• One can often design many different greedy algorithms for the same
problem,
 • each one locally, incrementally optimizing some different measure on its way
to a solution.

• When a greedy algorithm succeeds in solving a nontrivial problem
optimally,
 • it typically implies something interesting and useful about the structure of
the problem itself
Interval Scheduling

Interval scheduling

- Job \(j \) starts at \(s_j \) and finishes at \(f_j \).
- Two jobs compatible if they don’t overlap.
- Goal: find maximum subset of mutually compatible jobs.
Interval scheduling: greedy algorithms

- How should we pick the next job to schedule?
- Earliest start time
- Shortest interval
- Fewest conflicts
- Earliest finish time

EARLIEST-FINISH-TIME-FIRST $(n, s_1, s_2, \ldots, s_n, f_1, f_2, \ldots, f_n)$

SORT jobs by finish time so that $f_1 \leq f_2 \leq \ldots \leq f_n$

$A \leftarrow \emptyset$ \hspace{1cm} set of jobs selected

FOR $j = 1$ to n

If job j is compatible with A

$A \leftarrow A \cup \{j\}$

RETURN A

Let's analyze!