Lecture 15 – Greedy Algorithms in Graphs

Reading: KT Sections 4.4 and 4.5

Partial content of these slides have been obtained from the official lecture slides that accompany the textbook. A complete set of slides can be found at: http://www.cs.princeton.edu/~wayne/kleinberg-tardos/
Minimum Spanning Tree problem

It’s not about a single shortest path
Repairs on a budget
Repairs on a budget (Formally)

- **Input:**
 - Undirected graph $G = (V, E)$
 - With edge weights $w(u, v)$*

- **Output:**
 - Find a subset of the edges $T \subseteq E$ that connect all the vertices**
 - Such that:
 \[
 w(T) = \sum_{(u, v) \in T} w(u, v)
 \]
 is minimized

* Can weights be negative?
** What are the properties of T?
Minimizing the cost
Kruskal in action
Prim in action
Why does this work?

- Simplifying assumption. All edge costs c_e are distinct.

- Cut property. Let S be any subset of nodes, and let e be the min cost edge with exactly one endpoint in S. Then the MST contains e.

- Cycle property. Let C be any cycle, and let f be the max cost edge belonging to C. Then the MST does not contain f.

![Diagram showing examples of cut and cycle properties.](image)
Cycles and Cuts

• Cycle. Set of edges the form a-b, b-c, c-d, ..., y-z, z-a.

• Cutset. A cut is a subset of nodes S. The corresponding cutset D is the subset of edges with exactly one endpoint in S.

Cycle $C = 1-2, 2-3, 3-4, 4-5, 5-6, 6-1$

Cut $S = \{4, 5, 8\}$
Cutset $D = 5-6, 5-7, 3-4, 3-5, 7-8$
Proof of cut property

• Simplifying assumption. All edge costs c_e are distinct.

• Cut property. Let S be any subset of nodes, and let e be the min cost edge with exactly one endpoint in S. Then the MST T^* contains e.

• Pf. (exchange argument)
 • Suppose e does not belong to T^*, and let's see what happens.
 • Adding e to T^* creates a cycle C in T^*.
 • Edge e is both in the cycle C and in the cutset D corresponding to S \Rightarrow there exists another edge, say f, that is in both C and D.
 • $T' = T^* \cup \{e\} - \{f\}$ is also a spanning tree.
 • Since $c_e < c_f$, cost(T') < cost(T^*).
 • This is a contradiction. \blacksquare
Proof of cycle property

- Simplifying assumption. All edge costs c_e are distinct.

- Cycle property. Let C be any cycle in G, and let f be the max cost edge belonging to C. Then the MST T^* does not contain f.

- Pf. (exchange argument)
 - Suppose f belongs to T^*, and let's see what happens.
 - Deleting f from T^* creates a cut S in T^*.
 - Edge f is both in the cycle C and in the cutset D corresponding to $S \Rightarrow$ there exists another edge, say e, that is in both C and D.
 - $T' = T^* \cup \{e\} - \{f\}$ is also a spanning tree.
 - Since $c_e < c_f$, cost(T') < cost(T^*).
 - This is a contradiction. ■