Lecture 18 – Dynamic Programming

Reading: KT Sections 6.1 and 6.2

Partial content of these slides have been obtained from the official lecture slides that accompany the textbook. A complete set of slides can be found at: http://www.cs.princeton.edu/~wayne/kleinberg-tardos/

Algorithm techniques

- Data structures
 - Use extra data structures
 - Exploit the structure to improve complexity
- Greedy algorithms
 - Build up a solution incrementally
 - Myopically optimizing some local criterion
- Divide and conquer
 - Break up a problem into independent subproblems
 - Solve each subproblem
 - Combine solutions to subproblems to form solution to original problem
- Dynamic Programming
 - Break up a problem into a series of overlapping subproblems
 - Build up solutions to larger and larger subproblems
A bit of history

Bellman. Pioneered the systematic study of dynamic programming in 1950s.

Etymology.
- Dynamic programming = planning over time.
- Secretary of Defense was hostile to mathematical research.
- Bellman sought an impressive name to avoid confrontation.
Weighted Interval Scheduling problem

- Job \(j \) starts at \(s_j \), finishes at \(f_j \), and has weight or value \(v_j \).
- Two jobs compatible if they don’t overlap.
- Goal: find maximum-weight subset of mutually compatible jobs.

Let’s try solving it

- Will greedy work?

- How about divide and conquer?

- Is there some structure in the problem that we can exploit?
Let’s define a few notions

Notation. Label jobs by finishing time: $f_1 \leq f_2 \leq \ldots \leq f_n$.

Def. $p(j)$ = largest index $i < j$ such that job i is compatible with j.

Ex. $p(8) = 5$, $p(7) = 3$, $p(2) = 0$.

More notations

Notation. $OPT(j)$ = value of optimal solution to the problem consisting of job requests $1, 2, \ldots, j$.

Goal. $OPT(n)$ = value of optimal solution to the original problem.

Case 1. $OPT(j)$ selects job j.

- Collect profit v_j.
- Can’t use incompatible jobs $\{ p(j) + 1, p(j) + 2, \ldots, j-1 \}$.
- Must include optimal solution to problem consisting of remaining compatible jobs $1, 2, \ldots, p(j)$.

Case 2. $OPT(j)$ does not select job j.

- Must include optimal solution to problem consisting of remaining jobs $1, 2, \ldots, j-1$.

$OPT(j) = \begin{cases} 0 & \text{if } j = 0 \\ \max \{ v_j + OPT(p(j)), OPT(j-1) \} & \text{otherwise} \end{cases}$
A brute force solution

BRUTE-FORCE \((n, s_1, \ldots, s_n, f_1, \ldots, f_n, v_1, \ldots, v_n)\)

Sort jobs by finish time so that \(f_1 \leq f_2 \leq \ldots \leq f_n\).
Compute \(p[1], p[2], \ldots, p[n]\).
RETURN \(\text{COMPUTE-OPT}(n)\).

COMPUTE-OPT(\(j\))

IF \(j = 0\)
RETURN \(0\).
ELSE
RETURN \(\max \{ v_j + \text{COMPUTE-OPT}(p[j]), \text{COMPUTE-OPT}(j-1) \} \).

Memoization

Top-down dynamic programming (memoization). Cache result of each subproblem; lookup as needed.

TOP-DOWN \((0, s_1, \ldots, s_n, f_1, \ldots, f_n, v_1, \ldots, v_n)\)

Sort jobs by finish time so that \(f_1 \leq f_2 \leq \ldots \leq f_n\).
Compute \(p[1], p[2], \ldots, p[n]\).
\(M[0] \leftarrow 0\), — global array \(M[\]\)
RETURN \(\text{M-COMPUTE-OPT}(n)\).

M-COMPUTE-OPT(\(j\))

IF \(M[j] = \text{uninitialized}\)
\(M[j] \leftarrow \max \{ v_j + \text{M-COMPUTE-OPT}(p[j]), \text{M-COMPUTE-OPT}(j-1) \} \).
RETURN \(M[j]\).
Bottom-up dynamic programming

Bottom-up dynamic programming. Unwind recursion.

Algorithm:

1. Sort jobs by finish time so that \(f_1 \leq f_2 \leq \ldots \leq f_n \).
2. Compute \(p[1], p[2], \ldots, p[n] \).
3. \(M[0] \leftarrow 0 \) (previously computed values).
4. For \(j = 1 \) to \(n \):

 \[
 M[j] \leftarrow \max \{ v_j + M[p[j]], M[j-1] \}.
 \]

Running time. The bottom-up version takes \(O(n \log n) \) time.