Graphs with negative weights

- Given a graph $G = (V,E)$ with a weight function $w: V \times V \to \mathbb{R}$
 - In other words, it could have negative weights

- Can we use Dijkstra’s algorithm to find shortest paths in a graph with negative edge weights?
Another example

• What about the shortest path between s and t here?

Negative cycles

Def. A negative cycle is a directed cycle such that the sum of its edge weights is negative.

a negative cycle W: $c(W) = \sum_{e \in W} c_e < 0$
Shortest paths and negative cycles

If some path from \(v \) to \(t \) contains a negative cycle, then there does not exist a cheapest path from \(v \) to \(t \).

If \(G \) has no negative cycles, then there exists a cheapest path from \(v \) to \(t \) that is simple (and has \(\leq n - 1 \) edges).

How can we solve the Shortest Path problem as a dynamic program

Let's think together
Shortest-Paths (V, E, c, t)

Foreach node $v \in V$

\[M[0, v] \leftarrow \infty. \]

\[M[0, t] \leftarrow 0. \]

For $i = 1$ to $n - 1$

Foreach node $v \in V$

\[M[i, v] \leftarrow M[i-1, v]. \]

Foreach edge $(v, w) \in E$

\[M[i, v] \leftarrow \min \{ M[i, v], M[i-1, w] + c_{vw} \}. \]

Bellman-Ford (V, E, c, t)

Foreach node $v \in V$

\[d(v) \leftarrow \infty. \]

\[\text{successor}(v) \leftarrow \text{null}. \]

\[d(t) \leftarrow 0. \]

For $i = 1$ to $n - 1$

Foreach node $w \in V$

If $(d(w)$ was updated in previous iteration)

Foreach edge $(v, w) \in E$

If $(d(v) > d(w) + c_{vw})$

\[d(v) \leftarrow d(w) + c_{vw}. \]

\[\text{successor}(v) \leftarrow w. \]

If no $d(w)$ value changed in iteration i, **STOP**.