Problem 1. Suppose G is a connected undirected graph with a node v such that removing v from G makes the remaining graph disconnected. Such a v is called an articulation point. Give a necessary and sufficient condition on the DFS tree of G with root v such that v is an articulation point.

Problem 2. You’re helping a group of ethnographers analyze some oral history data they’ve collected by interviewing members of a village to learn about the lives of people who have lived there over the past two hundred years. From these interviews, they’ve learned about a set of n people (all of them now deceased), whom we’ll denote P_1, P_2, \ldots, P_n. They’ve also collected facts about when these people lived relative to one another. Each fact has one of the following two forms:

- For some i and j, person P_i died before person P_j was born; or
- For some i and j, the life spans of P_i and P_j overlapped at least partially.

Naturally, they’re not sure that all these facts are correct; memories are not so good, and a lot of this was passed down by word of mouth. So what they’d like you to determine is whether the data they’ve collected is at least internally consistent, in the sense that there could have existed a set of people for which all the facts they’ve learned simultaneously hold.

(a) Give an algorithm to do this: either it should produce proposed dates of birth and death for each of the n people so that all the facts hold true, or it should report (correctly) that no such dates can exist - that is, the facts collected by the ethnographers are not internally consistent.

(b) Give the worst-case running time of your algorithm. (No need to justify.)

(c) Prove that your algorithm is correct.

Problem 3. Let’s consider a long, quiet country road with houses scattered very sparsely along it. (We can picture the road as a long line segment, with an eastern endpoint and a western endpoint.) Further, let’s suppose that despite the bucolic setting, the residents of all these houses are avid cell phone users. You want to place cell phone base stations at certain points along the road, so that every house is within four miles of one of the base stations.

(a) Give an algorithm that achieves this goal, using the minimum number of base stations.

(b) Give the worst-case running time of your algorithm. Explain.

(c) Prove that your algorithm is correct.
Proof Problem

\LaTeX{} source for template: https://www.overleaf.com/read/kbjcxkqfndnn

You are consulting for a trucking company that does a large amount of business shipping packages between New York and Boston. The volume is high enough that they have to send a number of trucks each day between the two locations. Trucks have a fixed limit W on the maximum amount of weight they are allowed to carry. Boxes arrive at the New York station one by one, and each package i has a weight w_i. The trucking station is quite small, so at most one truck can be at the station at any time.

Company policy requires that boxes are shipped in the order they arrive; otherwise, a customer might get upset upon seeing a box that arrived after his make it to Boston faster. At the moment, the company is using a simple greedy algorithm for packing: they pack boxes in the order they arrive, and whenever the next box does not fit, they send the truck on its way.

They wonder if they might be using too many trucks, and they want your opinion on whether the situation can be improved. Here is how they are thinking. Maybe one could decrease the number of trucks needed by sometimes sending off a truck that was less full, and in this way allow the next few trucks to be better packed.

(a) What is the greedy algorithm proposed in this problem?

(b) To establish the optimality of this greedy packing algorithm, you need to identify a measure under which it “stays ahead” of all other solutions. What is that measure?

(c) Prove that, for a given set of boxes with specified weights, the greedy algorithm currently in use actually minimizes the number of trucks that are needed.