Directed Graphs: Strongly Connected Components, and Topological Sorting

Reading: KT 3.5—3.6

CS231 Fundamental Algorithms
Lyn Turbak
Department of Computer Science
Wellesley College
Tue April 12, 2022 (Revised Thu Apr 28)

Directed Graphs

A directed graph is a pair \((V, E)\) of
1. A set \(V\) of vertices (also called nodes)
2. A set \(E\) of directed edges (where each edge is a pair of two nodes†)

\[
\begin{align*}
\text{vertices} & \{ \{a,b,c,d,e,f,g,h\}, \\
& \quad \{\{a,c\}, \{b,a\}, \{b,e\}, \{b,g\}, \{c,a\}, \{c,b\}, \{c,d\}, \\
& \quad \{d,d\}, \{e,f\}, \{f,g\}, \{g,e\}, \{g,h\}\} \\
\text{directed edges} & \end{align*}
\]

† This definition does allow a self-edge from a vertex to itself.

Directed Paths

A path in a directed graph is a sequence of vertices where each vertex is connected to the next by a directed edge. A path is simple if no vertices are repeated. The length of the path is one less than the length of the sequence.

Simple path \((a,c,d,b,g,h)\); length=5 Nonsimple path \((c,a,c,d,d,b,g,e)\); length=7

Note: there’s a length 0 path from every node to itself. E.g., \((a)\)

Directed Cycles

A cycle in a directed graph is a path with length \(\geq 1\) beginning and ending at the same vertex. A simple cycle is a cycle that repeats no vertices except the first/last.

Simple cycle \((e,f,g,e)\) Nonsimple cycle \((a,c,a,c,d,d,b,a)\)
Mutual Reachability

In a directed graph, vertices \(u \) and \(v \) are **mutually reachable** if there’s a path from \(u \) to \(v \) and from \(v \) to \(u \).

Examples of mutually reachable vertex pairs:
\[(a,a), (a,b), (a,c), (a,d), (b,c), (b,d), (c,d), (e,f), (e,g), (f,g)\]

Examples of vertex pairs that aren’t mutually reachable:
\[(a,e), (a,f), (a,g), (a,h), (b,e), (b,f), (b,g), (b,h),
(c,e), (c,f), (c,g), (c,h), (d,e), (d,f), (d,g), (d,h),
(e,h), (f,h), (g,h)\]

Mutual reachability is:
- **reflexive**: For all vertices \(v \), \((v,v) \) is mutually reachable.
- **symmetric**: For all vertices \(u, v \), if \((u,v) \) is mutually reachable, then \((v,u) \) is mutually reachable.
- **transitive**: For all vertices \(u, v, w \), if \((u,v) \) and \((v,w) \) are mutually reachable, then \((u,w) \) is mutually reachable.

So mutual reachability is an equivalence relation.

In-degree and Out-degree

The **in-degree** of a vertex is the number of edges entering that vertex. The **out-degree** of a vertex is the number of edges exiting that vertex.

\[
\begin{align*}
\text{in-degree}(c) &= \text{in-degree}(f) = \text{in-degree}(h) = 1 \\
\text{in-degree}(a) &= \text{in-degree}(b) = \text{in-degree}(d) = \text{in-degree}(e) = \text{in-degree}(g) = 2 \\
\text{out-degree}(h) &= 0 \\
\text{out-degree}(a) &= \text{out-degree}(e) = \text{out-degree}(f) = \text{out-degree}(g) = 1 \\
\text{out-degree}(d) &= 2 \\
\text{out-degree}(b) &= \text{out-degree}(c) = 3
\end{align*}
\]

Strongly Connected Components

In a directed graph \(G \), a **strongly connected component** (or just **strong component**) is a subgraph of \(G \) consisting of all vertices in the same mutually reachable equivalence class, along with all edges that connect these vertices. Edges not in any strongly connected component are **cross edges** between components.

A graph can always be partitioned into a collection of strongly connected components, where each vertex is a member of exactly one such component.

The example graph has 3 strongly connected components.

Directed Graph Reversal

If \(G \) is a directed graph, its reversal \(G^{\text{rev}} \) has the same vertices, but all edges in the opposite direction.
Directed Acyclic Graphs (DAGs)

A directed graph G is a directed acyclic graph (DAG) iff it has no cycles. In practice, DAGs are used to represent prerequisites/dependencies, and tree-like structures with shared descendants.

This graph H is a DAG

This graph G is not a DAG

Topological Sort/Ordering on a DAG

A topological sort (or topological order) of a DAG D is a sequence S of all vertices from the DAG such that if there’s an edge in D from S_i to S_j, then $i < j$.

This graph H is a DAG

Some topological sorts of H:
(a, c, d, b, e, g, h)
(a, c, d, f, b, e, g, h)
(a, c, f, d, b, e, g, h)
(a, f, c, d, b, e, g, h)
(f, a, c, d, b, e, g, h)

Are there any others?

Directed Graph Representation:

We’ll assume the n vertices of graph have unique IDs (UIDs) numbered $1 .. N$, and that vertex names and edges (as adjacency lists for outgoing edges) are indexed by UID. This is like undirected graphs, except that u in $\text{OutAdj}[v]$ does not imply v in $\text{OutAdj}[u]$. In some contexts, the directed graph might also have InAdj for incoming edges.

Name array Name with 1-indexed arrays

```
[ "a", "b", "c", "d", "e", "f", "g", "h" ]
```

Adjacency array OutAdj with 1-indexed arrays. (Adjacent vertices are sorted in example, but need not be)

```
[ [3], # OutAdj[1]  
[2, 5, 7], # OutAdj[2]  
[1, 2, 4], # OutAdj[3]  
[2, 4], # OutAdj[4]  
[6], # OutAdj[5]  
[7], # OutAdj[6]  
[5, 8], # OutAdj[7]  
[] ] # OutAdj[8]
```

Some Typical Directed Graph Questions

What are some typical questions we want to answer about directed graphs?

- Is there a path between two vertices?
- What is the shortest path between two vertices? If edges are annotated with distances/weights, what is the shortest distance or minimal weight path between two vertices?
- Are two vertices mutually reachable? (i.e., are they in the same strongly connected component?)
- What are the strongly connected components of a graph?
- Does the graph have a cycle? Is there a cycle involving a particular vertex or edge?
- Is a graph a DAG?
- If a graph is a DAG, what is a topological sort of its vertices?
- Can we label the vertices/edges of a graph with information such that certain properties hold?
Topological Sort Algorithm

function TopSort(D) # If D is a DAG, return an array that’s a
 # sequence of the vertices of D in an order
 # respecting the directed edges in D.
 # Otherwise indicate that D has a cycle.
Remaining <- V(D) # Set of vertices to be processed.
Seq = new empty array # Initialize result sequence
while Remaining is nonempty
 choose a v in Remaining where len(InAdj[v]) = 0
 # One must exist or there’d be a cycle!
 # If one does not exist, can return an indication
 # that there’s a cycle.
 Seq@v # Extend result sequence with v
 Remove all edges in OutAdj[v] from D
 # affects InAdj for adjacent nodes
return Seq

Another Topological Sort Example

```
  a  c
  ↓  ↓
  b  d
  ↓  ↓
e  g
  ↓  ↓
f  h
```

Directed Graphs 13

Directed Graphs 14