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Greedy	Algorithms	

An	algorithm	is	greedy	if	it	makes	a	choice	to	opImize	some		

criterion	at	every	step.		

Whether	this	leads	to	a	globally	opImal	soluIon	depends	on	the		

nature	of	the	problem:	someImes	it	does,	someImes	it	doesn’t!	

Example:	Hill	Climbing	

You	are	trying	to	climb	to	the	top	of	a	mountain	in	a	dense	fog.	

A	greedy	strategy	is	to	take	each	step	in	the	direcIon	of	the		

highest	gradient.		

Whether	or	not	the	greedy	strategy	finds	the	top	of	the	mountain	

depends	on	the	terrain!	
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Interval	Scheduling	Problem	
Given	a	set	of	intervals	(a.k.a.	events,	acIviIes)	with	start	and	finish	Imes,	

return	a	subset	of	compa>ble	(no	two	overlap	in	Ime)	intervals	with	the	

most	intervals.	

E.g.,	intervals	could	be	events	that	use	a	room,	Imes	to	use	a	telescope,	etc.	

Example:	What’s	the	largest	compaIble	subset	of	the	following	intervals?			

Important:	Trying	to	maximize	the	number	of	nonoverlapping	intervals,	
																					not	the	total	Ime	of	these	intervals	(that’s	a	different	problem!)		
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Interval	RepresentaIon	
Each	interval	must	have	a	start	Ime	and	finish	Ime.	If	v	is	an	interval,	use	

start(v),	s(v)	or	sv	for	its	start	Ime	and	finish(v),	f(v)	or	fv	for	its	finish	Ime.		

It	might	also	have	a	UID,	a	label,	and	extra	informaIon	(e.g.,	variants	of		

interval	scheduling	can	associate	a	value/weight	with	each	interval.)	
(1,	A,	1,	2),	(2,	B,	4,	6),	(3,	C,	1,	4),		
(4,	D,	0,	2),	(5,	E,	2,	4),	(6,	F,	3,	4.5)	
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Greedy	Interval	Scheduling	Algorithm:	Idea	&	Example	

Idea:	greedily	choose	the	remaining	interval	with	the	earliest	finish	Ime,		

since	this	will	maximize	Ime	available	for	other	intervals.	

Example	(KT	Fig	4.2):			
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Greedy	Interval	Scheduling	Algorithm:	Pseudocode	

The	following	funcCons	use	linked	lists,	but	could	use	arrays	instead	

func>on	ScheduleIntervals(intervals)	#	linked	list	of	intervals	
						sorted	�	sortByFinish(intervals)	#	sort	intervals	by	finish	Cme	(ascending)	

						GreedilySchedule(sorted)	

func>on	GreedilySchedule(intervalsSortedByFinish)	#	linked	list	sorted	by	finish	Cme	

						if	empty?(intervalsSortedByFinish)	then	
												return	emptyList()	#	empty	linked	list	

						else	
												first	� head(intervalsSortedByFinish)	#	head	returns	first	item	of	list	

												rest	� tail(intervalsSortedByFinish)	#	tail	returns	all	but	first	item	of	list	

												while	start(head(rest))	<	finish(first)	do	
																		rest	� Tail(rest)	#	remove	intervals	overlapping	with	first	

												return	prepend(first,	Greedily-Schedule(rest))	
																		#	prepend	adds	item	to	front	of	linked	list	
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Not	All	Greedy	Strategies	Work	
Earliest	First	(KT	Fig	4.1a):			

Shortest	First	(KT	Fig	4.1b):			

Fewest	Overlaps	First	(KT	Fig	4.1c):			
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Why	Does	GreedySchedule	Work?	(Part	1)		
Claim:	GreedySchedule	returns	a	list	containing	maximal	compaIble	subset	of	input	intervals	

Proof:		
o  SorIng	intervals	by	finish	Ime	+	while	loop	to	remove	intervals	that	overlap	

with	first	(interval	with	earliest	finish	Ime)	guarantees	result	is	compaIble.		

o  There	may	be	other	compaIble	results	with	the	same	number	of	intervals,	but	not	more.			

Assume	GreedySchedule	returns	intervals	result	R	=	[i1,	i2,	…,	ik]	and	there	is	another	

opImal	soluIon	with	intervals	O	=	[j1,	j2,	…,	jm].	

Idea:	R	``stays	ahead”	of	O.		
KT	4.2:	For	all	indices	r	≤	k	we	have	f(ir)	≤	f(jr)		

Proof	of	4.2	by	induc>on:		
§  Base	case:	true	for	r	=	1,	since	i1	chosen	as	interval	with	earliest	finish	Ime	

§  InducCve	step:		
	f(ir-1)			≤			f(jr-1)				(by	IH)	

												≤			s(jr)				(by	fact	that	O	is	a	soluIon	with	compaIble	intervals)	

So	jr	is	available	as	a	candidate	when	GreedySchedule	chooses	next	interval	

amer	ir-1.	Since	it	chooses	ir	,	either		ir		=	jr		or	f(ir)			≤			f(jr)		
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Why	Does	GreedySchedule	Work?	(Part	2)		
KT	4.3	(adapted)	GreedySchedule returns an optimal list R
Proof by Contradiction

Assume there’s an optimal result O with m = len(O) > len(R) = k

By 4.2, f(ik) ≤ f(jk) 

By m > k, O contains an interval jk+1 where f(ik) ≤ f(jk) ≤ s(jk+1) 

So jk+1 is a compatible interval that’s still avaiable after ik is processed.�
But GreedySchedule terminates only when the list of remaining compatible�
intervals is empty: a contradiction. 
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GreedySchedule	Running	Time		

o  For	n	intervals,	sorIng	them	by	finish	Ime	takes	θ(n	log(n))		

(could	even	be	θ(n+k)	if	Imes	are	integers	in	restricited	range)	

o  Processing	sorted	intervals	and	construcIng	result	touches	
each	interval	once,	taking	Ime	θ(n)	

o  Total	Ime	=	θ(n	log(n))	+	θ(n)	=	θ(n	log(n))		
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Interval	ParIIoning	(Coloring)	Problem	

Schedule	all	requests	using	the	fewest	resources	(e.g.,	rooms,	

telescopes)	as	possible.		

Example	(KT	Fig	4.4)		
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Interval	ParIIoning:	Depth	

The	depth	of	a	set	of	intervals	is	the	maximal	number	of	intervals	

that	overlap	at	a	parIcular	Ime.	

Clearly	the	minimal	number	of	parIIons	must	be	at	least	the	depth.	
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Interval	ParIIoning:	Psuedocode	
func>on	LabelIntervalsByParIIon(intervals)		#	this	Cme	use	arrays	

						n	�	len(intervals)		

						d	�	depth(intervals)	#	find	depth	of	intervals	

						labeling	�	new	array	of	length	n	with	each	slot	None,	indexed	by	ID	of	interval	

						sorted	�	sortByStart(intervals)	#	sort	intervals	by	start	Cme	(ascending)	

						for	j	in	[1..n]	do		
												labels	�	{1	..	d}	#	possible	labels	(``colors’’)		for	j	
												for	i	in	[1..(j-1)]	do	#	sort	intervals	by	start	Cme	(ascending)	
																		if	sorted[i]	overlaps	sorted[j]	then	
																								labels	�	labels–	labeling(ID(sorted[i]))	#	remove	label	of	overlapping	interval	

												labeling	(ID(sorted[j]))	←	chooseOneOf(labels)	#	arbitrary	choice	of	remaining	labels	

						return	labeling		
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Interval	ParIIoning:	Example	

Example	(KT	Fig	4.4)	revisited	
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LabelIntervalsByParIIon:	Correctness	

KT	4.5:	In	the	greedy	LabelIntervalsByParIIon		

1.	Every	interval	is	assigned	a	label	(no	None	slots	in	labeling	at	end)	

Why?	When	interval	sorted[j]	is	reached,	at	most	d-1	intervals	with	earlier	start		

Imes	can	overlap	with	it,	so	there	is	always	at	least	one	label	lem	in	{1..d}	to	assign	

to	sorted[j]	in	labeling.		

2.	No	two	overlapping	intervals	receive	the	same	label		

Why?	Labels	for	all	preceding	overlapping	intervals	are	removed	from	consideraIon	

from	the	labels	set	before	one	label	is	chosen.		
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Generic	Greedy	Algorithm	
A	greedy	algorithm	makes	the	locally	opImal	choice	at	every	step:		

funcIon	GreedyAlgorithm(problem)	

						soln	�	{}	

						subproblem	�	problem	

						while	not	SoluIon?(soln,	problem)	do		
												choice	�	GreedyChoice(subproblem)	

																		#	GreedyChoice	makes	locally	opCmal	choice		

																		#	for	current	subproblem.		

												soln	�	soln	�	{choice}	

																		#	Meaning	of	�	can	depend	on	problem.		

												subproblem	�	Simplify(subproblem,	choice)		

																		#	Simplify	gives	remaining	subproblem		

																		#	a\er	choice	is	made.		

						return	soln		

	

	


