
Interval	Scheduling	1	

CS231	Fundamental	Algorithms	
Lyn	Turbak 

Department	of	Computer	Science	

Wellesley	College	

Tue	April	19,	2022	(Revised	Fri	Apr	22)	

Reading: KT	4.1,	CLRS	16.1	—	16.3

An	IntroducIon	to		

Greedy	Algorithms:	

Interval	Scheduling	

	

Interval	Scheduling	2	

Greedy	Algorithms	

An	algorithm	is	greedy	if	it	makes	a	choice	to	opImize	some		

criterion	at	every	step.		

Whether	this	leads	to	a	globally	opImal	soluIon	depends	on	the		

nature	of	the	problem:	someImes	it	does,	someImes	it	doesn’t!	

Example:	Hill	Climbing	

You	are	trying	to	climb	to	the	top	of	a	mountain	in	a	dense	fog.	

A	greedy	strategy	is	to	take	each	step	in	the	direcIon	of	the		

highest	gradient.		

Whether	or	not	the	greedy	strategy	finds	the	top	of	the	mountain	

depends	on	the	terrain!	

	

	

Interval	Scheduling	3	

Interval	Scheduling	Problem	
Given	a	set	of	intervals	(a.k.a.	events,	acIviIes)	with	start	and	finish	Imes,	

return	a	subset	of	compa>ble	(no	two	overlap	in	Ime)	intervals	with	the	

most	intervals.	

E.g.,	intervals	could	be	events	that	use	a	room,	Imes	to	use	a	telescope,	etc.	

Example:	What’s	the	largest	compaIble	subset	of	the	following	intervals?			

Important:	Trying	to	maximize	the	number	of	nonoverlapping	intervals,	
																					not	the	total	Ime	of	these	intervals	(that’s	a	different	problem!)		

Interval	Scheduling	4	

Interval	RepresentaIon	
Each	interval	must	have	a	start	Ime	and	finish	Ime.	If	v	is	an	interval,	use	

start(v),	s(v)	or	sv	for	its	start	Ime	and	finish(v),	f(v)	or	fv	for	its	finish	Ime.		

It	might	also	have	a	UID,	a	label,	and	extra	informaIon	(e.g.,	variants	of		

interval	scheduling	can	associate	a	value/weight	with	each	interval.)	
(1,	A,	1,	2),	(2,	B,	4,	6),	(3,	C,	1,	4),		
(4,	D,	0,	2),	(5,	E,	2,	4),	(6,	F,	3,	4.5)	



Interval	Scheduling	5	

Greedy	Interval	Scheduling	Algorithm:	Idea	&	Example	

Idea:	greedily	choose	the	remaining	interval	with	the	earliest	finish	Ime,		

since	this	will	maximize	Ime	available	for	other	intervals.	

Example	(KT	Fig	4.2):			

Interval	Scheduling	6	

Greedy	Interval	Scheduling	Algorithm:	Idea	&	Example	

Idea:	greedily	choose	the	remaining	interval	with	the	earliest	finish	Ime,		

since	this	will	maximize	Ime	available	for	other	intervals.	

Example	(KT	Fig	4.2):			

Interval	Scheduling	7	

Greedy	Interval	Scheduling	Algorithm:	Pseudocode	

The	following	funcCons	use	linked	lists,	but	could	use	arrays	instead	

func>on	ScheduleIntervals(intervals)	#	linked	list	of	intervals	
						sorted	�	sortByFinish(intervals)	#	sort	intervals	by	finish	Cme	(ascending)	

						GreedilySchedule(sorted)	

func>on	GreedilySchedule(intervalsSortedByFinish)	#	linked	list	sorted	by	finish	Cme	

						if	empty?(intervalsSortedByFinish)	then	
												return	emptyList()	#	empty	linked	list	

						else	
												first	� head(intervalsSortedByFinish)	#	head	returns	first	item	of	list	

												rest	� tail(intervalsSortedByFinish)	#	tail	returns	all	but	first	item	of	list	

												while	start(head(rest))	<	finish(first)	do	
																		rest	� Tail(rest)	#	remove	intervals	overlapping	with	first	

												return	prepend(first,	Greedily-Schedule(rest))	
																		#	prepend	adds	item	to	front	of	linked	list	

Interval	Scheduling	8	

Not	All	Greedy	Strategies	Work	
Earliest	First	(KT	Fig	4.1a):			

Shortest	First	(KT	Fig	4.1b):			

Fewest	Overlaps	First	(KT	Fig	4.1c):			



Interval	Scheduling	9	

Why	Does	GreedySchedule	Work?	(Part	1)		
Claim:	GreedySchedule	returns	a	list	containing	maximal	compaIble	subset	of	input	intervals	

Proof:		
o  SorIng	intervals	by	finish	Ime	+	while	loop	to	remove	intervals	that	overlap	

with	first	(interval	with	earliest	finish	Ime)	guarantees	result	is	compaIble.		

o  There	may	be	other	compaIble	results	with	the	same	number	of	intervals,	but	not	more.			

Assume	GreedySchedule	returns	intervals	result	R	=	[i1,	i2,	…,	ik]	and	there	is	another	

opImal	soluIon	with	intervals	O	=	[j1,	j2,	…,	jm].	

Idea:	R	``stays	ahead”	of	O.		
KT	4.2:	For	all	indices	r	≤	k	we	have	f(ir)	≤	f(jr)		

Proof	of	4.2	by	induc>on:		
§  Base	case:	true	for	r	=	1,	since	i1	chosen	as	interval	with	earliest	finish	Ime	

§  InducCve	step:		
	f(ir-1)			≤			f(jr-1)				(by	IH)	

												≤			s(jr)				(by	fact	that	O	is	a	soluIon	with	compaIble	intervals)	

So	jr	is	available	as	a	candidate	when	GreedySchedule	chooses	next	interval	

amer	ir-1.	Since	it	chooses	ir	,	either		ir		=	jr		or	f(ir)			≤			f(jr)		

	

	

Interval	Scheduling	10	

Why	Does	GreedySchedule	Work?	(Part	2)		
KT	4.3	(adapted)	GreedySchedule returns an optimal list R
Proof by Contradiction

Assume there’s an optimal result O with m = len(O) > len(R) = k

By 4.2, f(ik) ≤ f(jk) 

By m > k, O contains an interval jk+1 where f(ik) ≤ f(jk) ≤ s(jk+1) 

So jk+1 is a compatible interval that’s still avaiable after ik is processed.�
But GreedySchedule terminates only when the list of remaining compatible�
intervals is empty: a contradiction. 

	

Interval	Scheduling	11	

GreedySchedule	Running	Time		

o  For	n	intervals,	sorIng	them	by	finish	Ime	takes	θ(n	log(n))		

(could	even	be	θ(n+k)	if	Imes	are	integers	in	restricited	range)	

o  Processing	sorted	intervals	and	construcIng	result	touches	
each	interval	once,	taking	Ime	θ(n)	

o  Total	Ime	=	θ(n	log(n))	+	θ(n)	=	θ(n	log(n))		

	

Interval	Scheduling	12	

Interval	ParIIoning	(Coloring)	Problem	

Schedule	all	requests	using	the	fewest	resources	(e.g.,	rooms,	

telescopes)	as	possible.		

Example	(KT	Fig	4.4)		



Interval	Scheduling	13	

Interval	ParIIoning:	Depth	

The	depth	of	a	set	of	intervals	is	the	maximal	number	of	intervals	

that	overlap	at	a	parIcular	Ime.	

Clearly	the	minimal	number	of	parIIons	must	be	at	least	the	depth.	

Interval	Scheduling	14	

Interval	ParIIoning:	Psuedocode	
func>on	LabelIntervalsByParIIon(intervals)		#	this	Cme	use	arrays	

						n	�	len(intervals)		

						d	�	depth(intervals)	#	find	depth	of	intervals	

						labeling	�	new	array	of	length	n	with	each	slot	None,	indexed	by	ID	of	interval	

						sorted	�	sortByStart(intervals)	#	sort	intervals	by	start	Cme	(ascending)	

						for	j	in	[1..n]	do		
												labels	�	{1	..	d}	#	possible	labels	(``colors’’)		for	j	
												for	i	in	[1..(j-1)]	do	#	sort	intervals	by	start	Cme	(ascending)	
																		if	sorted[i]	overlaps	sorted[j]	then	
																								labels	�	labels–	labeling(ID(sorted[i]))	#	remove	label	of	overlapping	interval	

												labeling	(ID(sorted[j]))	←	chooseOneOf(labels)	#	arbitrary	choice	of	remaining	labels	

						return	labeling		

	

Interval	Scheduling	15	

Interval	ParIIoning:	Example	

Example	(KT	Fig	4.4)	revisited	

	Depth	=	3:	labels	=		

2

1

3

2

1

3

1

3

2

1

3

1

2

21 3

Interval	Scheduling	16	

LabelIntervalsByParIIon:	Correctness	

KT	4.5:	In	the	greedy	LabelIntervalsByParIIon		

1.	Every	interval	is	assigned	a	label	(no	None	slots	in	labeling	at	end)	

Why?	When	interval	sorted[j]	is	reached,	at	most	d-1	intervals	with	earlier	start		

Imes	can	overlap	with	it,	so	there	is	always	at	least	one	label	lem	in	{1..d}	to	assign	

to	sorted[j]	in	labeling.		

2.	No	two	overlapping	intervals	receive	the	same	label		

Why?	Labels	for	all	preceding	overlapping	intervals	are	removed	from	consideraIon	

from	the	labels	set	before	one	label	is	chosen.		



Interval	Scheduling	17	

Generic	Greedy	Algorithm	
A	greedy	algorithm	makes	the	locally	opImal	choice	at	every	step:		

funcIon	GreedyAlgorithm(problem)	

						soln	�	{}	

						subproblem	�	problem	

						while	not	SoluIon?(soln,	problem)	do		
												choice	�	GreedyChoice(subproblem)	

																		#	GreedyChoice	makes	locally	opCmal	choice		

																		#	for	current	subproblem.		

												soln	�	soln	�	{choice}	

																		#	Meaning	of	�	can	depend	on	problem.		

												subproblem	�	Simplify(subproblem,	choice)		

																		#	Simplify	gives	remaining	subproblem		

																		#	a\er	choice	is	made.		

						return	soln		

	

	


