
Homework 4: Pacman versus the world
Due October 2nd at 10pm

Part 1: Basic search
The UC Berkeley AI course has a set of projects that revolve around the Pacman game. Pacman is
a game in which your character, seemingly a sentient block of cheese, tries to (1) eat lots of pellets
and (2) avoid being eaten by ghosts.

The Berkeley projects come with a Python library that implements a GUI to run Pacman on your
computer. Your goal is to fill in some of the functions related to search, which implement strategies
for the Pacman agent to use during the game.

Refer to the UC Berkeley assignment for instructions on how to run the Pacman game simula-
tion: UC Berkeley Project 1.

Download the starter code using the link on the course website. If you unzip this file, you will
find a folder called singleagent.

In Part 1, you will implement basic search strategies that will enable you to find a path to a goal (for
instance, a game block with a particularly tasty item, like a strawberry). You will fill in missing
functions in search.py.

You can check your work by running the autograder.py file that is provided. You are not required
to implement all parts of the original UC Berkeley assignment, so you should expect to see zeros
for questions that you have not attempted.

Task 1: Breadth-first search
Implement breadth-first search by completing the breadthFirstSearch function. I have al-
ready implemented the depthFirstSearch function for you. Much of the code will be similar, al-
though you will need a different data structure.

Before starting your implementation, take a look at the data structures provided in util.py. You
should also look at the searchProblem class at the top of the search.py file, so that you understand
what methods a problem object has.

Task 2: A* search
In A* search, your agent is guided by a heuristic. Implement A* search for Pacman by com-
pleting the aStarSearch function in search.py.

The search problem is very similar to breadth-first search. The difference is that now your data
structure needs to be one that is ordered according to the heuristic that you are using to guide

1

https://inst.eecs.berkeley.edu/~cs188/fa21/project1


search. (You do not need to write your own heuristic.)

I found it useful to make a helper function called cost that, given a node, a problem, and a heuristic,
returns the estimated cost of the node. Remember that in A* search, the estimated cost of a state
includes both the cost to reach the current state, and the heuristically estimated cost of reaching the
goal from the state.

When you are trying to determine the next action to take, you may find it useful to break this down
into three components: the cost of reaching the current state, the cost of taking the action, and the
estimated cost of reaching the goal from the state that you will reach if you take that action.

Part 2: You Look Like a Thing and I Love You reflections

Question 1 (10 points)
Pick a game that you enjoy playing and research whether an AI player has been built for it. How
well does the AI player do? What kind of techniques does it use? If the AI player has surpassed
human performance, when did this happen?

You can pick a board game or a video game.

Question 2 (10 points)
Consider the word game Wordle: https://www.nytimes.com/games/wordle/index.
html. If you were building an AI program to solve this game, what approach would you take?
Discuss whether or not the following approaches could be applied: constraint-solving, uninformed
search (BFS/DFS), and A* search.

2

https://www.nytimes.com/games/wordle/index.html
https://www.nytimes.com/games/wordle/index.html

