
Homework 7: Reclassifying Recipes
Due November 6th at 10pm

Part 1: Expanding Our Network
Last week we built a regression classifier for classifying recipes into courses. We hand-selected
features to feed into our model, and achieved fairly good performance. But it’s annoying to have
to build the features ourselves!

In this part of the assignment, you’ll build a better classifier by using a neural network to extract
features from the titles of the recipes.

As a human, you can probably guess the category of most of these recipes from their titles alone.
But up until this point, we have not been making good use of our recipe titles. Maybe you hand-
crafted features to capture some of the information in the titles last week, but you had to guess
which words were important.

This week we will outsource the work of feature selection to another, more powerful network. We
will take our recipe titles and turn them into feature vectors by using a powerful language model
called DistilBERT, which, given a word, outputs a 768-dimension embedding (feature representa-
tion) of the word.

I have given you a new file to work with called bert_model.py. You can run this file in two modes:
"train", to train your model, or "interactive", as described in Task 3. To run in "train" mode, run:

python3 bert_model.py train

A Note on Training Time and Model Checkpointing
We will work with large input representations this week. This will make the code much slower.
You should expect your models to take around 30 minutes to run; perhaps an hour, depending
on your computer. (If you run into difficulty, you can run your model on a lab machine. Let me
know if you need help with this.)

To make things easier, I have set up the starter code to checkpoint your model: it saves progress
checkpoints as it goes, so that if you stop and start training without losing your progress. To
retrain from scratch, you must delete these checkpoint files (found in the ckpt directory).

Task 1: Incorporating Word Embeddings
The model that I have given you extends our regression model with DistilBERT embeddings. The
prep_bert_data function takes the recipe titles and tokenizes them: translates them into lists of
indices in the DistilBERT vocabulary. This involves truncating and padding them to the same
length.

1



For instance, the tokenizer function maps the title "Tuscan-Style Potato Soup" to the following
indices:

0: <s>
565: T
687: us
7424: can
12: -
31774: Style
38855: Potato
31905: Soup
2: </s>
1: <pad>
1: <pad>
1: <pad>

(Notice that DistilBERT uses subword tokens in its vocabulary, so some words get split into mul-
tiple indices.)

The model that I have given you is still a regression model, but it takes these much larger, automatically-
extracted vectors of features.

Paste in your regression model code into the make_model function. The input to your layers is
now named last_hidden_state rather than inputs.

Because the embedding layer adds a dimension, we will need to flatten our input back to its
original 2D shape before passing it to the Dense layer for prediction.

Run the model and observe how well it does. Record its loss and accuracy, and make some
observations on how well it does across recipe classes.

(You will see a number of warnings when you run your code. This is because we are taking layers
from a pretrained model, but we are freezing the weights. You can ignore these warnings.)

Task 2: Layering Up
We’re using embeddings now, but our model is still a regression model. Now it’s time to add more
parameters to our model and make it into a neural network.

Let’s add hidden layers to our network. You should add these before your Flatten layer, and you
should not give them an activation function.

The first layer should take in the output from DistilBERT (last_hidden_states). Each subsequent
layer should take as input the output of the previous layer.

Add 2 more dense layers to your network. Retrain the model and observe how well it does.
Record your model loss and accuracy, and make some observations on how well it does across
recipe classes. Did the hidden layers improve the model?

2



Task 3: Adversarial Input and Model Interpretability
When we add hidden layers, there’s a trade-off in interpretability. Before, we could measure how
useful each feature was to our model by looking at its weight. Now, our best tool for understanding
how the model is making its decisions is to manipulate our input. This is called a probe task.

You can run your program in "interactive" mode to interactively probe your model with new recipe
titles. To run in "interactive" mode, run:

python3 bert_model.py interactive

Play around with this, and try to find some minimal pairs: pairs of recipe titles that are almost the
same, but are classified differently by the model.

Construct 3 minimal pairs that illustrate aspects of how the model makes its decisions. For
each example, make a hypothesis about which features in the input the model is paying at-
tention to, and discuss how your minimal pair supports this hypothesis. At least one of your
examples should illustrate a model error: a case where a human can guess the correct category,
but the model cannot.

Part 4: Reading Response

Question 1 (10 points)
In Chapter 7, Shane discusses three problems that plague machine learning classification: class
imbalance, overfitting, and biases in the data. Discuss some approaches we could take to figure out
whether our recipe classifier suffers from these issues.

3


