YLLATAILY Discussion

Pick one of these concepts to discuss in your small group:

- Catastrophic Forgetting
- Adversarial Attacks
- Bias Amplification

Are these concepts relevant for today's state-of-the-art models like ChatGPT? Why or why not?
Recap: Logistic Regression Classifiers
Idea of logistic regression

- Compute $w \cdot x + b$

- Pass it through the sigmoid function: $\sigma(w \cdot x + b)$ so that we can treat it as a probability

\[
P(y = 1) = \sigma(w \cdot x + b)
\]

\[
P(y = 0) = 1 - \sigma(w \cdot x + b)
\]
The two phases of logistic regression

Training: we learn weights w and b using stochastic gradient descent and cross-entropy loss.

Test: Given a test example x we compute $p(y|x)$ using learned weights w and b, and return whichever label ($y = 1$ or $y = 0$) is higher probability
Logistic Regression Example: Text Classification
Sentiment example: does $y=1$ or $y=0$?

It's hokey. There are virtually no surprises, and the writing is second-rate. So why was it so enjoyable?

For one thing, the cast is great.

Another nice touch is the music. I was overcome with the urge to get off the couch and start dancing. It sucked me in, and it'll do the same to you.
Features

<table>
<thead>
<tr>
<th>Definition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_1 count of positive words {great, fun... enjoyable}</td>
<td>3</td>
</tr>
<tr>
<td>X_2 count of negative words {bad, terrible... boring}</td>
<td>2</td>
</tr>
</tbody>
</table>
| X_3 \[
\begin{cases}
1 & \text{if "no" occurs} \\
0 & \text{otherwise}
\end{cases}
\] | 1 |
Weights

\[W = \begin{bmatrix} 4 & -3 & -1 \end{bmatrix} \]

\[b = -0.5 \]
Classifying sentiment for input x

Weighted sum: $WX + b$

$W_1X_1\; W_2X_2\; W_3X_3\; b$

$= 4.3 + -3.2 + -1.1 + -0.5$

$= 4.5$

$p(1|X) = \sigma(\text{Weighted sum})$

$= \sigma(4.5)$

$= 0.989$

$p(-1|X) = 1 - p(1|X)$

$= 0.011$

98.9% that the review is positive
Classification in (binary) logistic regression: summary

Given:

- a set of classes: (+ sentiment, - sentiment)
- a vector \(\mathbf{x} \) of features \([x_1, x_2, ..., x_n]\)
 - \(x_1 = \text{count("awesome")}\)
 - \(x_2 = \log(\text{number of words in review})\)
- A vector \(\mathbf{w} \) of weights \([w_1, w_2, ..., w_n]\)
- \(w_i\) for each feature \(f_i\)

\[
P(y = 1) = \sigma(w \cdot x + b) = \frac{1}{1 + \exp(-(w \cdot x + b))}
\]
Multinomial Logistic Regression

Often we need more than 2 classes
- Positive/negative/neutral
- Parts of speech (noun, verb, adjective, adverb, preposition, etc.)
- Classify emergency SMSs into different actionable classes

If >2 classes we use **multinomial logistic regression**
- = Softmax regression
- = Multinomial logit
- = Maximum entropy modeling or MaxEnt

So "logistic regression" means binary (2 classes)
Multinomial Logistic Regression

The probability of everything must still sum to 1

\[P(\text{positive}|\text{doc}) + P(\text{negative}|\text{doc}) + P(\text{neutral}|\text{doc}) = 1 \]

Need a generalization of the sigmoid called \textbf{softmax}

\begin{itemize}
 \item Takes a vector \(z = [z_1, z_2, ..., z_k] \) of \(k \) arbitrary values
 \item Outputs a probability distribution
\end{itemize}
The softmax function

Turns a vector $z = [z_1, z_2, \ldots, z_k]$ of k arbitrary values into probabilities

$$\text{softmax}(z_i) = \frac{\exp(z_i)}{\sum_{j=1}^{k} \exp(z_j)} \quad 1 \leq i \leq k$$
The softmax function

Turns a vector $z = [z_1, z_2, ..., z_k]$ of k arbitrary values into probabilities:

$$z = [0.6, 1.1, -1.5, 1.2, 3.2, -1.1]$$

$$\text{softmax}(z) = \left[\frac{\exp(z_1)}{\sum_{i=1}^{k} \exp(z_i)}, \frac{\exp(z_2)}{\sum_{i=1}^{k} \exp(z_i)}, \ldots, \frac{\exp(z_k)}{\sum_{i=1}^{k} \exp(z_i)} \right]$$

$$[0.055, 0.090, 0.006, 0.099, 0.74, 0.010]$$
Softmax in multinomial logistic regression

\[p(y = c | x) = \frac{\exp(w_c \cdot x + b_c)}{\sum_{j=1}^{K} \exp(w_j \cdot x + b_j)} \]

Input is still the dot product between weight vector \(w \) and input vector \(x \), but now we need separate weight vectors for each of the \(K \) classes.

\[\text{action} = [-2, 3, 6] \quad \text{romcoms} = [-1, 5, 27] \]

\[\text{anime} = [7, -1, 4] \]
Features in binary versus multinomial logistic regression

Binary: positive weight

\[x_5 = \begin{cases}
1 & \text{if } "!" \in \text{doc} \\
0 & \text{otherwise}
\end{cases} \quad w_5 = 3.0 \]

Multinominal: separate weights for each class:

| Feature \(f_5(x) \) | Definition \(\begin{cases}
1 & \text{if } "!" \in \text{doc} \\
0 & \text{otherwise}
\end{cases} \) | \(w_{5,+} \) \(w_{5,-} \) \(w_{5,0} \) |
|---------------------|---|----------------|----------------|----------------|
| \(f_5(x) \) | \(\begin{cases}
1 & \text{if } "!" \in \text{doc} \\
0 & \text{otherwise}
\end{cases} \) | 3.5 | 3.1 | -5.3 |
Feature Representations
What does recent English borrowing *ongchoi* mean?

Suppose you see these sentences:

- Ong choi is delicious *sautéed with garlic*.
- Ong choi is superb *over rice*
- Ong choi *leaves* with salty sauces

And you've also seen these:

- ...spinach *sautéed with garlic over rice*
- Chard stems and *leaves* are *delicious*
- Collard greens and other *salty* leafy greens

Conclusion:

- Ongchoi is a leafy green like spinach, chard, or collard greens
- We could conclude this based on words like "leaves" and "delicious" and "sauteed"
What kinds of contexts does the word occur in?

<table>
<thead>
<tr>
<th></th>
<th>garlic</th>
<th>rice</th>
<th>green</th>
<th>leaves</th>
</tr>
</thead>
<tbody>
<tr>
<td>spinach</td>
<td>75</td>
<td>10</td>
<td>339</td>
<td>290</td>
</tr>
<tr>
<td>salmon</td>
<td>81</td>
<td>102</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>dinosaur</td>
<td>2</td>
<td>1</td>
<td>418</td>
<td>113</td>
</tr>
<tr>
<td>ongchoi</td>
<td>91</td>
<td>113</td>
<td>381</td>
<td>287</td>
</tr>
</tbody>
</table>
Ongchoi: *Ipomoea aquatica* "Water Spinach"

空心菜
kangkong
rau muống
...

Yamaguchi, Wikimedia Commons, public domain
We represent text using word vectors.

Idea: a word meaning is based on its distance from other word meanings.

Each word = a vector (not just "good" or "w_{45}")

Similar words are "nearby in semantic space"

We build this space automatically by seeing which words are nearby in text

Text Features
Image Features

For computer vision applications, we need a way of describing images. We represent images as matrices of pixel values.

Grayscale images can be represented with a single matrix.

Color images need to be represented with a 3D tensor (3rd dimension encodes color channel).

Why matrices for images and vectors for text?
Language is sequential, which makes it more useful to concatenate vectors lengthwise rather than stack them.
grayscale images are matrices

what range of values can each pixel take?
color images are tensors

Channels are usually RGB: Red, Green, and Blue
Other color spaces: HSV, HSL, LUV, XYZ, Lab, CMYK, etc
Logistic Regression Example: Pet Picture Classification
Goal: Classify Pet Pictures

- Dataset: cat + dog pictures
- Goal: classify a picture as either a cat or a dog
- Input: grayscale images
Building a Model

We’ll build our model using a machine learning library called Tensorflow.

Tensorflow is a Python library, but most functions are implemented in C (so they are fast!).

Tensorflow provides useful abstractions for models:

- **tensor**: n-dimensional container for data
- **layer**: apply functions to an input tensor of n dimensions to produce an output tensor of m dimensions.
- **model**: consist of layers connected together
Example Data
Splitting Our Data

Generate a Dataset

```python
In [4]:
image_size = (180, 180)
batch_size = 32

train_ds = tf.keras.preprocessing.image_dataset_from_directory(
    "PetImages",
    color_mode='grayscale',
    validation_split=0.2,
    subset="training",
    seed=1337,
    image_size=image_size,
    batch_size=batch_size,
)
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
    "PetImages",
    color_mode='grayscale',
    validation_split=0.2,
    subset="validation",
    seed=1337,
    image_size=image_size,
    batch_size=batch_size,
)

Found 23410 files belonging to 2 classes.
Using 18728 files for training.
Found 23410 files belonging to 2 classes.
Using 4682 files for validation.
```
Creating Our Model Architecture

def make_model(input_shape, num_classes):
 inputs = keras.Input(shape=input_shape) # input layer
 x = layers.Flatten()(inputs) # flatten to a single dimension
 if num_classes == 2:
 activation = "sigmoid"
 units = 1
 else:
 activation = "softmax"
 units = num_classes
 outputs = layers.Dense(units, activation=activation)(x)
 return keras.Model(inputs, outputs) # weights + bias layer - this is the regression bit!

model = make_model(input_shape=image_size, num_classes=2)
k keras.utils.plot_model(model, show_shapes=True)
Creating Our Model Architecture

- **input_1** to **InputLayer**:
 - Input: [(None, 180, 180)]
 - Output: [(None, 180, 180)]

- **flatten** to **Flatten**:
 - Input: (None, 180, 180)
 - Output: (None, 32400)

- **dense** to **Dense**:
 - Input: (None, 32400)
 - Output: (None, 1)
Training

Train the model

ePOCHS = 50

callbacks = [
 keras.callbacks.ModelCheckpoint("save_at_{epoch}.h5"),
]
model.compile(
 optimizer=keras.optimizers.Adam(1e-3),
 loss="binary_crossentropy",
 metrics=[["accuracy"],
)
model.fit(
 train ds, epochs=epochs, callbacks=callbacks, validation_data=val ds,
Evaluating Classifiers
Evaluation

Consider a binary text classification task: Is this passage from a book a "smell experience" or not?

Towards Olfactory Information Extraction from Text: A Case Study on Detecting Smell Experiences in Novels

Ryan Brate and Paul Groth
University of Amsterdam
Amsterdam, the Netherlands
r.brate@gmail.com
p.t.groth@uva.nl

Marieke van Erp
KNAW Humanities Cluster
Digital Humanities Lab
Amsterdam, the Netherlands
marieke.van.erp@dh.huc.knaw.nl

Abstract

Environmental factors determine the smells we perceive, but societal factors shape the importance, sentiment and biases we give to them. Descriptions of smells in text, or as we call them ‘smell experiences’, offer a window into these factors, but they must first be identified. To the best of our knowledge, no tool exists to extract references to smell experiences from text. In
Evaluation

Consider a binary text classification task:
Is this passage from a book a "smell experience" or not?

You build a "smell" detector
- Positive class: paragraph that involves a smell experience
- Negative class: all other paragraphs
The 2-by-2 confusion matrix
Evaluation: Accuracy

Why don't we use **accuracy** as our metric?

Imagine we saw 1 million paragraphs

- 100 of them mention smells
- 999,900 talk about something else

We could build a classifier that labels every paragraph "not about smell"
Evaluation: Accuracy

Why don't we use **accuracy** as our metric?

Imagine we saw 1 million paragraphs
- 100 of them mention smells
- 999,900 talk about something else

We could build a classifier that labels every paragraph "not about smell"
- It would get 99.99% accuracy!
- But the whole point of the classifier is to help literary scholars find passages about smell to study--- so this is useless!
- That's why we use **precision** and **recall** instead
Evaluation: Precision

% of items the system detected (i.e., items the system labeled as positive) that are in fact positive (according to the human gold labels)

PRECISION =
Evaluation: Recall

% of items actually present in the input that were correctly identified by the system.

RECALL =
Why Precision and recall

Our no-smells classifier
- Labels nothing as "about smell"

Accuracy =

Recall =

Precision =
Numerical Underflow

So far we've been working with relatively small sample spaces. This means our probabilities have been decently large.

As we go on in this class, our sample spaces are going to get much larger. We want to be able to reason about the probabilities of things like:

- All words in English
- All pixels in a photo
- All possible game states for Pacman
Solution: make the numbers bigger

- Intuition: we care about how big probabilities are relative to the other probabilities in our distribution, not the actual value.

Probabilities:
- \(p(\text{heart}) = 0.1 \)
- \(p(\text{rainbow}) = 0.2 \)
- \(p(\text{letter}) = 0.7 \)

Interpretation: a letter is \textit{7 times more likely} than a heart!
Solution: make the numbers bigger

- Intuition: we care about how big probabilities are relative to the other probabilities in our distribution, not the actual value.

<table>
<thead>
<tr>
<th>Probabilities:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>p(heart)</td>
<td>0.1 100</td>
</tr>
<tr>
<td>p(rainbow)</td>
<td>0.2 200</td>
</tr>
<tr>
<td>p(letter)</td>
<td>0.7 700</td>
</tr>
</tbody>
</table>

What if we just multiply all our probs by 100?

This preserves the ratio.
Solution: make the numbers bigger

- What if we just multiply all our probs by 100? This preserves the ratio.

Probabilities:
\[
\begin{align*}
p(\text{heart}) &= 0.1\ 100 \\
p(\text{rainbow}) &= 0.2\ 200 \\
p(\text{letter}) &= 0.7\ 700
\end{align*}
\]

However, if we want to recover the probabilities later, we'll need to **renormalize** them. This means **remembering that we multiplied by 100**.
Solution: log-transform the numbers

- Instead, we use a log transformation. This changes the range from $[0,1]$ to $[-\infty, 0]$.

Log base doesn't matter much but we usually use natural log (base e): \ln.

Probabilities:
- $p(\text{heart}) = 0.1^{-2.3}$
- $p(\text{rainbow}) = 0.2^{-1.6}$
- $p(\text{letter}) = 0.7^{-0.36}$

www.desmos.com/calculator/aczt76asao
Avoiding Harms in Classification

Slides borrowed from Jurafsky & Martin Edition 3
Harms in sentiment classifiers

Kiritchenko and Mohammad (2018) found that most sentiment classifiers assign lower sentiment and more negative emotion to sentences with African American names in them.

This perpetuates negative stereotypes that associate African Americans with negative emotions.
Harms in toxicity classification

Toxicity detection is the task of detecting hate speech, abuse, harassment, or other kinds of toxic language.

But some toxicity classifiers incorrectly flag as being toxic sentences that are non-toxic but simply mention identities like blind people, women, or gay people.

This makes it harder for members of these communities to connect, organize, and report mistreatment.
What causes these harms?

Can be caused by:

- Biases in training data (machine learning systems can amplify biases in their training data)
- Imbalance/lack of representation in training data
- Annotator bias
- Problems in the resources used (like lexicons)
- Problems in model architecture (like how the model's goal is defined)

Mitigation of these harms is an open research area