CS 232:

Fall 2023
Artificial Intelligence a

Prof. Carolyn Anderson
Wellesley College

YLLATAILY Discussion

Pick one of these concepts to discuss in your small group:
Catastrophic Forgetting
Adversarial Attacks

Bias Amplification

Are these concepts relevant for today's state-of-the-art
models like ChatGPT? Why or why not?

Recap:
Logistic Regression Classifiers

. : el
[dea of logistic regression o

N OV\%) k et S

N g WK
Compute w-x+b & ki

Pass it through the sigmoid function: o(w - x+b)
so that we can treat it as a probability

P
<
||
N>
||
|
Q
B
&3
+
=

The two phases of logistic regression

Training: we learn weights w and b using stochastic
gradient descent and cross-entropy loss.

Test: Given a test example x we compute p(y|x) using
learned weights w and b, and return whichever label (y =
1 or y = 0) is higher probability

Logistic Regression Example:
Text Classification

Slides borrowed from Jurafsky & Martin Edition 3

Sentiment example: does y=1 or y=0?

[t's’hokey . There are virtually no surprises , and the
writing is Gecondsgate . So why was it so enjoyable ?

For one thing , the cast isgreat .
Another nice touch is the music . I was overcome

with the urge to get off the couch and start dancing .
[t sucked me in, and it'll do the same to you .

Features

Dz Pt Fon \'alye
gt -
X, comt of fosrie gords A

L grest, fon... am}ojaéhj
Y—,, Comt of \/\aala{ﬂ\l{ werel § Z
[dad {e/(ﬂ[)(k 6010\/\(1]]

)(3 L v " ocous /‘
O sMeruise

Classitying sentiment for input x

= 45
p(+1X)= G (pagpbe son) 0.7 7o
- & (4.5) Hnat A

Classification in (binary) logistic regression: summary

Given:

a set of classes: (+ sentiment,- sentiment)
a vector x of features [x1, X2, .., Xn]

x1= coamttawesome) (o (pm\h\\c\
X2 = melﬂa\w) count (eative)

A vector w of weights [wl, w2, .., wn]

w; for each feature f;

P(y=1) = o(w-x+b)
1
l1+exp(—(w-x+b))

Multi-class Regression

Slides borrowed from Jurafsky & Martin Edition 3

Multinomial Logistic Regression

Often we need more than 2 classes
Positive /negative / neutral

Parts of speech (noun, verb, adjective, adverb, preposition,
etc.)

Classity emergency SMSs into different actionable classes
If >2 classes we use multinomial logistic regression

= Softmax regression
= Multinomial logit
= Maximum entropy modeling or MaxEnt

So "logistic regression” means binary (2 classes)

Multinomial Logistic Regression

The probability of everything must still sum to 1

P(positive|doc) + P(negative|doc) +
P(neutral|doc) = 1

Need a generalization of the sigmoid called softmax

Takes a vector z = |71, 22, ..., zk] of k arbitrary values

Outputs a probability distribution

The softmax function

Turns a vector z = [z, z,, ..., z;] of k arbitrary

values into probabilities
_ Q,KP(Z?)
ot t max (2})" g | £ 4k
z exp (2

1=

The softmax function

Turns a vector z = [z,2,,...,2;] Of k arbitrary values into

probabilities :

z=1[0.6,1.1,—1.5,1.2/3.2,—1.1]

exp (z1) exp (22) o exp (2k)
Siiexp(z) Srexp(z) Soiexp(z)

softmax(z) =

0.055,0.090,0.006,0.099;0.74, 0.010]

Softmax in multinomial logistic regression

ackioN ST SN
g exp(w.-x+b
p(y=clx) = — We:x+be)
Zexp(w] x+bj)
=1 1 X
! qonre ot

Input is still the dot product between weight vector w
and input vector X, but now we need separate weight
vectors for each of the K classes.

ackion s C~2.3,63 (omems = [-1,9,7]
Inie = E7)":L'7

Features in binary versus multinomial
logistic regression

Binary: positive weight
_ [1if “1”edoc ws = 3.0
* 7 1 0 otherwise

Multinominal: separate weights for each class:

Feature Definition W54+ Ws5_ Wsy
1 if “!” € doc

f5(x) { 35 3.1 —5.3

O otherwise

Feature Representations

Slides borrowed from Jurafsky & Martin Edition 3

What does recent English borrowing ongchoi mean?

Suppose you see these sentences:

Ong choi is delicious sautéed with garlic.
Ong choi is superb over rice
Ong choi leaves with salty sauces

And you've also seen these:

...spinach sautéed with garlic over rice
Chard stems and leaves are delicious
Collard greens and other salty leafy greens

Conclusion:

Ongchoi is a leafy green like spinach, chard, or collard greens
We could conclude this based on words like "leaves" and "delicious" and "sauteed"

What kinds of contexts does the word occur in?

garlic rice green leaves
spinach 75 10 339 290
salmon 81 102 3 5
dinosaur 2 1 418 113
ongchoi 91 113 381 287

Ongchoi: Ipomoea aquat:c;a Water Spinach

I
kangkong
rau muOng

Yamaguchi, Wikimedia Commons, public domain

Text Features

We represent text using word vectors.

Idea: a word meaning is based on its distance from other
word meanings.

Each word = a vector (not just "good" or "w,s")

Similar words are "nearby in semantic space”

We build this space automatically by seeing which words
are nearby in text

not good
by : dislike

. . . incredibly bad
Ihdt now are y worse

0aad
worsl

Image Features

For computer vision applications, we need a way ot
describing images. We represent images as matrices of
pixel values.

Grayscale images can be represented with a single matrix.

Color images need to be represented with a 3D tensor
(3rd dimension encodes color channel).

Why matrices for images and vectors for text?
Language is sequential, which makes it more useful to
concatenate vectors lengthwise rather than stack them.

grayscale images are matrices

G~ sl 710ls|lsllallallz]|l1]lo

L & -~
\L.n Gare .\"ompumn‘«\cl 95

what range of values can each pixel take?

Slides adapted from Mohit Iyyer

color images are tensors

(EEENOEEEME
NEEOREEEM
EEEEEOEN
[EEEEHEEE
EEEEEECN
FEEEEEEER

channel x height x width

Channels are usually RGB: Red, Green, and Blue
Other color spaces: HSV, HSL, LUV, XYZ, Lab, CMYK, etc

Slides adapted from Mohit Iyyer

Logistic Regression Example:
Pet Picture Classification

Goal: Classify Pet Pictures

Dataset: cat + dog pictures
Goal: classify a picture as either a cat or a dog

Input: grayscale images

Building a Model

We’ll build our model using a machine learning library
called Tensorflow.

Tensorflow is a Python library, but most functions are
implemented in C (so they are fast!).

Tensorflow provides useful abstractions for models:

tensor: n-dimensional container for data

layer: apply functions to an input tensor of n
dimensions to produce an output tensor of m
dimensions.

model: consist of layers connected together

Example Data

Splitting Our Data

In [4]:

Generate a Dataset

image_size
batch_size

(180, 180)
32

train_ds = tf.keras.preprocessing.image_dataset_from_directory(

)

"PetImages",
color_mode='grayscale',
validation_split=0.2,
subset="training",
seed=1337,
image_size=image_size,
batch_size=batch_size,

val_ds = tf.keras.preprocessing.image_dataset_from_directory/(

"PetImages",
color_mode='grayscale',
validation_split=0.2,
subset="validation",
seed=1337,
image_size=image_size,
batch_size=batch_size,

Found 23410 files belonging to 2 classes.
Using 18728 files for training.
Found 23410 files belonging to 2 classes.
Using 4682 files for validation.

Creating Our Model Architecture

def make_model(input_shape, num_classes):
inputs = keras.Input(shape=input_shape)|inputlayer
x = layers. Flatten()(lnputs) flatten to a single dimension
if num_classes ==

activation = "sigmoid"

units =1 —

. select sigmoid or softmax
else: . . based on number of classes

activation = "softmax"

units = num_classes
outputs = layers.Dense(units, activation=activation) (x)

return keras.Model(inputs, outputs) weights + bias layer -
this is the regression bit!

model = make_model(input_shape=image_size, num_classes=2)
keras.utils.plot_model(model, show_shapes=True)

Creating Our Model Architecture

mput: | [(None, 180, 180)]
output: | [(None, 180, 180)]

mput_1 | InputLayer

Y
input: | (None, 180, 180)

output: (None, 32400)

'

mput: | (None, 32400)
output: (None, 1)

flatten | Flatten

dense | Dense

Training

Train the model

epochs = 50

callbacks = [
keras.callbacks.ModelCheckpoint("save_at_{epoch}.h5"),
]

model. compile(
optimizer=keras.optimizers.Adam(1le-3),
loss="binary_crossentropy",
metrics=["accuracy"],

)
model. fit(

train_ds, epochs=epochs, callbacks=callbacks, validation_data=val_ds,
)

Evaluating Classifiers

Slides borrowed from Jurafsky & Martin Edition 3

Evaluation

Consider a binary text classification task:

s this passage from a book a "smell
experience" or not?

Towards Olfactory Information Extraction from Text:
A Case Study on Detecting Smell Experiences in Novels

Ryan Brate and Paul Groth Marieke van Erp
University of Amsterdam KNAW Humanities Cluster
Amsterdam, the Netherlands Digital Humanities Lab
r.brate@Rgmail.com Amsterdam, the Netherlands
p.t.groth@uva.nl marieke.van.erp@dh.huc.knaw.nl
Abstract

Environmental factors determine the smells we perceive, but societal factors factors shape the
importance, sentiment and biases we give to them. Descriptions of smells in text, or as we call
them ‘smell experiences’, offer a window into these factors, but they must first be identified. To
the best of our knowledge, no tool exists to extract references to smell experiences from text. In

Evaluation

Consider a binary text classification task:

Is this passage from a book a "smell experience”
or not?

You build a "smell" detector

Positive class: paragraph that involves a smell
experience

Negative class: all other paragraphs

The 2-by-2 confusion matrix

Truth

Prediction

Evaluation: Accuracy

Why don't we use accuracy as our metric?

Imagine we saw 1 million paragraphs
100 of them mention smells
999,900 talk about something else

We could build a classifier that labels every
paragraph "not about smell"

Evaluation: Accuracy

Why don't we use accuracy as our metric?

Imagine we saw 1 million paragraphs
100 of them mention smells
999,900 talk about something else

We could build a classifier that labels every paragraph
"not about smell"
It would get 99.99% accuracy!

But the whole point of the classifier is to help literary scholars
find passages about smell to study--- so this is useless!

That's why we use precision and recall instead

Evaluation: Precision

% of items the system detected (i.e.,
items the system labeled as positive)
that are in fact positive (according to
the human gold labels)

PRECISION =

Evaluation: Recall

% of items actually present in the input that
were correctly identified by the system.

RECALL =

Why Precision and recall

Our no-smells classifier
Labels nothing as "about smell"

Accuracy =

Recall =

Precision =

Numerical Underflow

So far we've been working with relatively small sample
spaces. This means our probabilities have been decently
large.

As we go on in this class, our sample spaces are going to
get much larger. We want to be able to reason about the
probabilities of things like:

All words in English
All pixels in a photo

All possible game states for Pacman

Solution: make the numbers bigger

¢

Intuition: we care about how big probabilities are
relative to the other probabilities in our distribution, not
the actual value.

Interpretation: a letter is

Probabilities: 7 times more likely than
p(heart) = 0.1

p(rainbow) = 0.2
p(letter) = 0.7

a heart!

Solution: make the numbers bigger

¢

Intuition: we care about how big probabilities are
relative to the other probabilities in our distribution, not
the actual value.

Pralhelslices What if we just multiply

p(heart) = 81 100 all our probs by 100?

p(rainbow) = 82 200
p(letter) = 87 700 This preserves the ratio.

Solution: make the numbers bigger

¢

What if we just multiply all our probs by 100? This

preserves the ratio.

Probabilities:
p(heart) = 61 100
p(rainbow) = 82 200
p(letter) = 87 700

However, if we want to
recover the probabilities
later, we'll need to
renormalize them. This
means remembering that
we multiplied by 100.

Solution: log-transform the numbers

¢

Instead, we use a log transformation. This changes the
range from [0,1] to [-co, O].

Log base doesn't matter much but we
usually use natural log (base e):

Probabilities: | /
p(heart) =64 -2.3 L | 4 6 a
p(rainbow) =82 -1.6
p(letter) = 67 -0.36

www.desmos.com / calculator/aczt76asao

Avoiding Harms in
Classification

Slides borrowed from Jurafsky & Martin Edition 3

Harms in sentiment classifiers

Kiritchenko and Mohammad (2018) found that most
sentiment classifiers assign lower sentiment and
more negative emotion to sentences with African
American names in them.

This perpetuates negative stereotypes that associate
African Americans with negative emotions

Harms in toxicity classification

Toxicity detection is the task of detecting hate speech,
abuse, harassment, or other kinds of toxic language

But some toxicity classifiers incorrectly flag as being
toxic sentences that are non-toxic but simply mention
identities like blind people, women, or gay people.

This makes it harder for members of these communities
to connect, organize, and report mistreatment.

What causes these harms?

Can be caused by:

Biases in training data (machine learning systems
can amplify biases in their training data)

Imbalance/lack of representation in training data
Annotator bias

Problems in the resources used (like lexicons)
Problems in model architecture (like how the

model's goal is defined)

Mitigation of these harms is an open research area

