CS 232:

Fall 2023
Artificial Intelligence a

Prof. Carolyn Anderson
Wellesley College



New policy: earn extra late days

You can earn bonus late days by attending a CS research
talk. To be eligible:

e The talk must be about CS research or Al research in a related
field

* The talk must be in-person (so that you have the ability to ask
questions)

* You must write a paragraph about the talk and what you learned
and email it to me.



Research

« Manipulation-robust citizens' assembly selection
studies how to reduce incentives for people to try to
increase their chances of being chosen for the
assembly by misreporting their features.

The distortion of public-spirited participatory
budgeting studies the welfare of participatory

budgeting outcomes in a beyond-worst-case model of
voter behavior: instead of considering only their own
interests, voters also weigh the interests of others. This
model is motivated by the potential for this behavior to
be cultivated in practice, via democratic deliberation.

Bailey laagan

October 25th


https://drive.google.com/file/d/1-gUepIqfvy4PWOUDNB_Zuj8oA0LtwU16/view?usp=drive_link
https://drive.google.com/file/d/1wOQ377OW-jJOnjigBMnHcs0jmzk7Ckxa/view?usp=sharing
https://drive.google.com/file/d/1wOQ377OW-jJOnjigBMnHcs0jmzk7Ckxa/view?usp=sharing

Computer Science Colloquium Series | Fall 2023

Supporting Responsible Al Practices
in Public Sector Contexts

Anna is a third year PhD student at Carnegie Mellon's Human-
Computer Interaction Institute. Her research focuses on improving
the design, evaluation, and governance of Al technologies used to
inform complex, consequential decisions in real-world
organizations. In addition to her research, she will share prior
experiences forming collaborations with public sector agencies,
doing research internships with industry groups, travelling to
conferences, and mentoring undergraduate students. The session
will end with an open Q/A discussion on applying to and doing a
PhD in Computer Science / Human-Computer Interaction and

other topies. Nov 2nd, 12:45-2:00 | SCI H401
Lunch will be served

Accessibility apd Disability Resources:
accessibility@wellesley.edu Questions??? eni.mustafara

November 2nd




Recap



The two phases of logistic regression

Training: we learn weights w and b using stochastic
gradient descent and cross-entropy loss.

Test: Given a test example x we compute p(y|x)
using learned weights w and b, and return
whichever label (y =1 or y = 0) is higher probability



Classification in (binary) logistic regression: summmary

Given:
> a set of classes: (#sentiment,<sentiment)

° avector x of features [x1, x2, .., Xn]
> x1= count( "awesome"
> x2 = log(number of words in review)

° A vector w of weights {wl, w2, .., wn]

o w; for each feature f;

Ply=1) =/o(w-x+b) bies

P&ob%bilih) - e mX‘Fb))

ey S pos“)H\JQ




Classitying sentiment for input x
- x=(3,2,33 wWelu,-3:I] ©=-0:5
P(+|&) = P(Y11x) = o (b )
= o (4,21 [3.20 g

L = g(4.5)

= 0. 9¢9

PO =g 1) = 4 - G(weib)
= A4-0%7 =0-0



The two phases of logistic regression

Training: we learn weights w and b using stochastic
gradient descent and cross-entropy loss.

———

Opﬁmi'zu tranvy objeskik ¢ minimiee [oss

Test: Given a test example x we compute p(y|x)
using learned weights w and b, and return
whichever label (y =1 or y = 0) is higher probability



How Does Learning Work?

Slides borrowed from Jurafsky & Martin Edition 3



Learning in Supervised Classification

Supervised classification:
« We know the correct label y (either O or 1) for each x.
« But what the system produces is an estimate, %

We want to set w and b to minimize the distance between
our estimate 5() and the true yl.

« We need a distance estimator: a loss function or a cost
function

« We need an optimization algorithm to update w and b to
minimize the loss.



Learning components

A loss function:
> cross-entropy loss

An optimization algorithm:
> stochastic gradient descent



The distance between jand y

We want to know how far is the classifier output:
»= o(w-x+b)

from the true output:
y [= either O or 1]

We'll call this difference:
L(3,y) = how much 5 differs from the true y



Intuition of negative log likelihood loss
= cross-entropy loss

A case of conditional maximum likelihood
estimation

We choose the parameters w,b that maximize
« the log probability

» of the true y labels in the training data

« given the observations x



Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x)

Since there are only 2 discrete outcomes (0 or 1) we can
express the probability p(y|x) from our classifier as:

5 (g k= 23‘39, 7
=‘1: ( | ) = % = A
I g=1: Pl 4 '_0‘3

|f %:_O: ‘Q(xal()* "Cﬂ = ,'%



Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x)
A9 ( ,\3\“3
Maximize: ~ POIX) = « =
A A)Td
/Wax'\ wze- ‘Oj @)(‘Q'KB"’ '03 f‘.‘l 0'3) }
= 4 log %+ Ll (1)

i, \Oc"- V\»‘V W |0‘3 gr,(_\(k
Wata, @(P : Yofw o of [07 §Igeu



Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x)
Minimize the cross-entropy loss

Minimize: Lex(9)= = log plyhxd
- - [\3\06]3\ t ["QB‘U%(":D‘S
= - [ylog (o3t ((-) (1w |



Does this work for our sentiment example?

We want loss to be:
« smaller if the model estimate is close to correct

- bigger if model is confused

Let's first suppose the true label of this is y=1 (positive)

It's hokey . There are virtually no surprises, and the writing is
second-rate . So why was it so enjoyable ? For one thing, the cast
is great . Another nice touch is the music . | was overcome with
the urge to get off the couch and start dancing . It sucked me in,
and it'll do the same to you .



Let's see if this works for our sentiment example

True value is y=1. How well is our model doing?

p(+P) =Py=1k) = (.98

?(—\x\: 0.0l
ool ey 14 toge Lot (19 g Lelca)]
= = Ly 1o 00489+ Clgloq (1-0987 ]

- -[1- 103[0-0157)1' (I-l)[o:)(l'o-‘fg‘))]
z - loa(d'qm) = 0.0l



What if the true label was 0?

p(+x) =P(y=1]x) = 0.9€9

Lee(§,y) = = Ly log o (wxib) + ('WD lon(l-c(m%ﬁ

— [‘3 \06‘) 0. %9 -(—([ ‘]\l()c)“ Oc/gon]

= = (0 -1lo50-87) + C1-6) Lo (I- 0982

- - loq UI-0-9%D
H'Oj(Oﬁ



Let's see if this works for our sentiment example

The loss when model was right (if true y=1)

0. o

Is lower than the loss when model was wrong (if true y=0):

H.95|

Sure enough, loss was bigger when model was wrong!



Stochastic Gradient
Descent

Slides borrowed from Jurafsky & Martin Edition 3



Our goal: minimize the loss

Let's make explicit that the loss function is
parameterized by weights 6=(w,b)

o And we’ll represent 5as f (x; 6 ) to make the
dependence on 6 more obvious

We want the weights that minimize the loss,
averaged over all examples:

LCE(H,) — Lcc—(f( M ), 3’”)
6 : N)b

N
6, = a!‘gvgm w\ , J
. (eal loss 4 eacin acSvle




|

aromecs

Intuition of gradient descent

How do | get to the bottom of this river
canyon?

Look around me 360:

Find the direction of
steepest slope down

Go that way




Our goal: minimize the loss

For logistic regression, loss'functionsis convex
» A convex function has just one minimum

» Gradient descent starting from any point is

guaranteed to find the minimum
»  (Loss for neural networks is non-convex)



Let's first visualize for a single scalar w
Q: Given current w, should we make it bigger or smaller?

A: Move w in the reverse direction from the slope of the function

Loss ! Should we move
right or left from here?




Let's first visualize for a single scalar w
Q: Given current w, should we make it bigger or smaller?

A: Move w in the reverse direction from the slope of the function

A
Loss

slope of loss at Wl/

1S negative

So we'll move positive




Let's first visualize for a single scalar w

Q: Given current w, should we make it bigger or smaller?

A: Move w in the reverse direction from the slope of the function

A
Loss

one step
of gradient

slope of loss at Wl//' descent

1S negative

So we'll move positive




Gradients

The gradient of a function of many variables
is a vector pointing in the direction of the
greatest increase in a function.

Gradient Descent: Find the gradient of the
loss function at the current point and move
in the opposite direction.



How much do we move in that direction ?

« The value of the gradient (slope in
our example) %L(f(x;w),y) weighted
by a learning rate n

« Higher learning rate means move w
faster

d
+1 __ .t :
144 — W U%L(f(X,W)a)’)

—




Now let's consider N dimensions

We want to know where in the N-
dimensional space (of the N parameters that
make up 0 ) we should move.

The gradient is just such a vector; it expresses
the directional components of the sharpest
slope along each of the N dimensions.



Imagine 2 dimensions, w and b
Cost(w,b)

Visualizing the
gradient vector
at the red point

It has two
dimensions
shown in the x-
v plane




function STOCHASTIC GRADIENT DESCENT(L(), f(), x, y) returns 6
# where: L is the loss function
# f is a function parameterized by 0
# x is the set of training inputs x(l), x(z), e x(m)
# y is the set of training outputs (labels) y(l), y(z), e y(’")

0+0
repeat til done  # see caption
For each training tuplé (x, y) (in random order)

1. Optional (for reporting): # How are we doing on this tuple?

Compute §1) = f (x(’) 6) # What is our estimated output §?

Compute the loss L3®,yO) # How far off is $() from the true output y{)?
2.8+ VoL(f(x19;0), y(’)) # How should we move 0 to maximize loss?
3.0-0 — T& # Go the other way instead

return 6




hﬁﬁ(\)q PN‘@/’VWJ .

WL Ser
Hyperparameters prem:

(e b] fve pocke|
The learning rate n is a hyperparameter

> too high: the learner will take big steps and overshoot
° too low: the learner will take too long

Hyperparameters:
» Briefly, a special kind of parameter for an ML model

« Instead of being learned by algorithm from
supervision (like regular parameters), they are
chosen by algorithm designer.



(Game



Logistic Regression Example:
Pet Picture Classification



Goal: Classify Pet Pictures

Dataset: cat + dog pictures
Goal: classify a picture as either a cat or a dog

Input: grayscale images



Building a Model

We’ll build our model using a machine learning library
called Tensorflow.

Tensorflow is a Python library, but most functions are
implemented in C (so they are fast!).

Tensorflow provides useful abstractions for models:

tensor: n-dimensional container for data

layer: apply functions to an input tensor of n
dimensions to produce an output tensor of m
dimensions.

model: consist of layers connected together



Example Data




Creating Our Model Architecture

def make_model(input_shape, num_classes):
inputs = keras.Input(shape=input_shape)|inputlayer
x = layers. Flatten()(lnputs) flatten to a single dimension
if num_classes ==

activation = "sigmoid"

units =1 —

. select sigmoid or softmax
else: . . based on number of classes

activation = "softmax"

units = num_classes
outputs = layers.Dense(units, activation=activation) (x)

return keras.Model(inputs, outputs) weights + bias layer -
this is the regression bit!

model = make_model(input_shape=image_size, num_classes=2)
keras.utils.plot_model(model, show_shapes=True)




Creating Our Model Architecture

mput: | [(None, 180, 180)]
output: | [(None, 180, 180)]

mput_1 | InputLayer

Y
input: | (None, 180, 180)

output: (None, 32400)

'

mput: | (None, 32400)
output: (None, 1)

flatten | Flatten

dense | Dense




Training

Train the model

epochs = 50

callbacks = [
keras.callbacks.ModelCheckpoint("save_at_{epoch}.h5"),
]

model. compile(
optimizer=keras.optimizers.Adam(1le-3),
loss="binary_crossentropy",
metrics=["accuracy"],

)
model. fit(

train_ds, epochs=epochs, callbacks=callbacks, validation_data=val_ds,
)




Overfitting

A model that perfectly match the training data
nas a problem.

t will also overfit to the data, modeling noise

> A random word that perfectly predicts y (it happens
to only occur in one class) will get a very high weight.

> Failing to generalize to a test set without this word.

A good model should be able to generalize



Evaluating Classifiers

Slides borrowed from Jurafsky & Martin Edition 3



Evaluation

Consider a binary text classification task:

s this passage from a book a "smell
experience" or not?

Towards Olfactory Information Extraction from Text:
A Case Study on Detecting Smell Experiences in Novels

Ryan Brate and Paul Groth Marieke van Erp
University of Amsterdam KNAW Humanities Cluster
Amsterdam, the Netherlands Digital Humanities Lab
r.brate@Rgmail.com Amsterdam, the Netherlands
p.t.groth@uva.nl marieke.van.erp@dh.huc.knaw.nl
Abstract

Environmental factors determine the smells we perceive, but societal factors factors shape the
importance, sentiment and biases we give to them. Descriptions of smells in text, or as we call
them ‘smell experiences’, offer a window into these factors, but they must first be identified. To
the best of our knowledge, no tool exists to extract references to smell experiences from text. In



Evaluation

Consider a binary text classification task:

Is this passage from a book a "smell experience”
or not?

You build a "smell" detector

Positive class: paragraph that involves a smell
experience

Negative class: all other paragraphs



The 2-by-2 confusion matrix

Truth

+ - _

e e Preusion Py

Prediction F roaie Postinie e
‘ Fale /W\,_& o Vanvy ?

Y\Lq@h“ﬁ N\Qg‘@hf ¢ eshictiony wer

Q«ﬂ(i:e- | TP+
T
TP+FN < [eerenven




Evaluation: Accuracy

Why don't we use accuracy as our metric?

Imagine we saw 1 million paragraphs
100 of them mention smells
999,900 talk about something else

We could build a classifier that labels every
paragraph "not about smell"



Evaluation: Accuracy

Why don't we use accuracy as our metric?

Imagine we saw 1 million paragraphs
100 of them mention smells
999,900 talk about something else

We could build a classifier that labels every paragraph
"not about smell"
It would get 99.99% accuracy!

But the whole point of the classifier is to help literary scholars
find passages about smell to study--- so this is useless!

That's why we use precision and recall instead



Evaluation: Precision

% of items the system detected (i.e.,
items the system labeled as positive)
that are in fact positive (according to
the human gold labels)

_Te
PRECISION = "™ o



Evaluation: Recall

% of items actually present in the input that
were correctly identified by the system.

RECALL = P

———————

TP+ FN



Why Precision and recall

Our no-smells classifier
Labels nothing as "about smell"

Accuracy = 19.11%

Recall = O _0O
(0O

\
Precision = © __ Al

O+




