CS 232: Artificial Intelligence Fall 2023

Prof. Carolyn Anderson Wellesley College

Spot the differences

Example: XOR

Slides borrowed from Jurafsky & Martin Edition 3

The XOR problem

Minsky and Papert (1969)

Can neural units compute simple functions of input?

AND				OR	XOR		
x 1	x2	у	x 1	x2	у	x1 x2	? y
0	0	0	0	0	0	0 0	0
0	1	0	0	1	1	01	1
1	0	0	1	0	1	10	1
1	1	1	1	1	1	1 1	0

Perceptrons

A very simple neural unit

- Binary output (0 or 1)
- No non-linear activation function

$$y = \begin{cases} 0, & \text{if } \mathbf{w} \cdot \mathbf{x} + b \leq 0 \\ 1, & \text{if } \mathbf{w} \cdot \mathbf{x} + b > 0 \end{cases}$$

Deriving AND

Goal: return 1 if x1 and x2 are 1

Use bias to make sure both must be 1

$$y = \begin{cases} 0, & \text{if } \mathbf{w} \cdot \mathbf{x} + b \leq 0 \\ 1, & \text{if } \mathbf{w} \cdot \mathbf{x} + b > 0 \end{cases}$$

Deriving OR

Goal: return 1 if either input is 1 Don't need to do anything with bias

$$y = \begin{cases} 0, & \text{if } \mathbf{w} \cdot \mathbf{x} + b \leq 0 \\ 1, & \text{if } \mathbf{w} \cdot \mathbf{x} + b > 0 \end{cases}$$

$W_1X_1 + W_2X_2 + 6 \leq 0$: $F_1 + W_2 = 3 = 1$				$W, X, +W_2 \times 2+0 \leq 0$ if $X, Q, r = 0$
SO	lvir	ng	X	DR 620
W1 4W2 40 50		XOR		
$w_1 X_1 + w_2 X_7 + 0 > 0$	x 1	x 2	y	
$if x_1 = 1 k_2 = 0$	0	0	0	$X_2 \longrightarrow (x)^{-1}$
·	0	1	1	67
$W_{1} + 6 > 0$	1	0	1	+ 1
	1	1	0	

Trick question! It's not possible to capture XOR with perceptrons

Why? Perceptrons are linear classifiers

Perceptron equation is the equation of a line

 $w_1 x_1 + w_2 x_2 + b = 0$

(in standard linear format: $x_2 = (-w_1/w_2)x_1 + (-b/w_2)$)

This line acts as a **decision boundary**

- 0 if input is on one side of the line
- 1 if on the other side of the line

Decision boundaries

Feedforward Networks

Neural Network Unit

Using feedforward networks

Slides borrowed from Jurafsky & Martin Edition 3

Can we get back to cat pics, please?

Finally, we're ready to power up our supervised cat/dog classifier by **adding more layers**. This takes it from a **regression model** to a **neural network**.

New Architecture

Training a Neural Network

Intuition: training a 2-layer Network

Intuition: Training a 2-layer network

For every training tuple (x, y)

- Run *forward* computation to find our estimate \hat{y}
- Run *backward* computation to update weights:
- For every output node

Compte loss L between y ký For every weight w from hidden lage father * For every hidden node yndrete for weight byer. Assess han much blane it descres For every neight w from input -> hidden l=yer. Ydak scording to trome.