
Prof. Carolyn Anderson
Wellesley College

CS	232:		
Arti+icial	Intelligence

Fall	2023

November 2nd

Recap

Intuition:	training	a	2-layer	Network

4

xnx1

System output !̂
Actual answer !

Training instance

Loss function L()!̂, !

Forward pass

Backward pass

g

E
n

fun
so

i

Intuition:	Training	a	2-layer	network

For every training tuple

◦ Run forward computation to find our estimate

◦ Run backward computation to update weights:

◦ For every output node

◦ Compute loss between true and the estimated

◦ For every weight from hidden layer to the output layer

◦ Update the weight

◦ For every hidden node

◦ Assess how much blame it deserves for the current answer

◦ For every weight from input layer to the hidden layer

◦ Update the weight

(", !)
!̂

! !̂
$

$
5

Loss	Function:	a	measure	of	how	far	off	the	
current	answer	is	from	the	right	answer.

For binary logistic regression, we use cross

entropy loss:

6

Intuit yodels
guess
Siem ants

5 Ixtye
0r

Gradient	descent	for	weight	updates

The derivative of the loss function with respect to weights

tells us how to adjust the weights to make better predictions.

Derivative of the loss function:

We want to move the weights in the opposite direction of the

gradient:

For logistic regression:

fixing j

y

wth wt 8wLfffxiwJ.y d

D I I
EEE

Wt n wat y x

Where	did	that	derivative	come	from?

9

Each node takes an upstream gradient, multiplies it by the local
gradient (the gradient of its output with respect to its input), and
uses the chain rule to compute a downstream gradient to be
passed on to a prior node.

A node may have multiple local gradients if it has multiple inputs.

x1 x2 x3

y

w1 w2 w3

∑

b

σ

+1

z

a

É gradient

I
Inamgradient

dangfdient

Backward	Differentiation

For training, we need the derivative of the loss with respect
to each weight in every layer of the network.

Problem: the derivatives on the prior slide only give the
updates for one weight layer: the last one, since loss is
computed only at the very end of the network!

Solution: error backpropaga+on (Rumelhart, Hinton, Williams,
1986)

• Backprop is a special case of backward differentiation
11

Computation	Graphs

A computation graph represents the process

of computing a mathematical expression

12

Computations:

3
d ab

e a td

Etc e

ForwardPass

Computation	Graphs

A computation graph represents the process

of computing a mathematical expression

13

e=a+d

d = 2b L=ce

a

b

c

Computations:

Backwards	differentiation	in	computation	graphs

The importance of the computation graph

comes from the backward pass

This is used to compute the derivatives that

we’ll need for the weight update.

The	chain	rule

Computing the derivative of a composite function:

f (x) = u(v(x))

f (x) = u(v(w(x)))

Example

17

Backward Pass

t

of 2

OO

E Ee
d 26

L Ce

É 1

C 1 z e atd

85 87 2

Summary

For training, we need the derivative of the loss with

respect to weights in early layers of the network

• But loss is computed only at the very end of the

network!

Solution: backward differentiation
Given a computation graph and the derivatives of all the

functions in it we can automatically compute the

derivative of the loss with respect to these early weights.

20

Generation

AI	Tasks

Search Classification Generation

September October November

Informed	Search

Regression

Neural	Networks

Language	Models

Image	Generation

Uninformed	Search

Adversarial	Games

Navigation

Learning	Under		
Uncertainty

Sentiment	Analysis

Image	Classification

Text	Classification

Chatbots

Finetuning

Prompt	Engineering

Language	Modeling

Language	Modeling

Language modeling is the task of predicting what comes next in a
sentence.

Language modeling can also assign probabilities to sequences of text.

In addition, it turns out to be a useful and powerful way to do
representation learning.

Language models are used in:
✦ Google search
✦ Auto-correction / auto-complete
✦ Speech recognition
✦ Voice assistants
✦ Chatbots

https://www.youtube.com/watch?v=2lR8Fzays4I

Chiang	(2023):		
ChatGPT	is	a	Blurry	JPEG	of	the	Web	

[...	H]allucinations	are	anything	but	
surprising;	if	a	compression	algorithm	is	
designed	to	reconstruct	text	after	ninety-
nine	per	cent	of	the	original	has	been	
discarded,	we	should	expect	that	

significant	portions	of	what	it	generates	
will	be	entirely	fabricated.

If	a	large	language	model	has	compiled	a	
vast	number	of	correlations	between	

economic	terms—so	many	that	it	can	offer	
plausible	responses	to	a	wide	variety	of	
questions—should	we	say	that	it	actually	

understands	economic	theory?

Imagine	what	it	would	look	like	if	ChatGPT	
were	a	lossless	algorithm.	If	that	were	the	case,	
it	would	always	answer	questions	by	providing	
a	verbatim	quote	from	a	relevant	Web	page.	We	
would	probably	regard	the	software	as	only	a	
slight	improvement	over	a	conventional	search	
engine,	and	be	less	impressed	by	it.[...]	When	
we’re	dealing	with	sequences	of	words,	lossy	
compression	looks	smarter	than	lossless	
compression.

There’s	a	type	of	blurriness	that	is	acceptable,	
which	is	the	re-stating	of	information	in	

different	words.	Then	there’s	the	blurriness	of	
outright	fabrication,	which	we	consider	
unacceptable	when	we’re	looking	for	facts.

Some	might	say	that	the	output	of	large	
language	models	doesn’t	look	all	that	
different	from	a	human	writer’s	first	draft,	
but,	again,	I	think	this	is	a	superficial	
resemblance.	Your	first	draft	isn’t	an	
unoriginal	idea	expressed	clearly;	it’s	an	
original	idea	expressed	poorly,	and	it	is	
accompanied	by	your	amorphous	
dissatisfaction,	your	awareness	of	the	
distance	between	what	it	says	and	what	you	
want	it	to	say.

Indeed,	a	useful	criterion	for	gauging	a	large	
language	model’s	quality	might	be	the	

willingness	of	a	company	to	use	the	text	that	it	
generates	as	training	material	for	a	new	model.	
If	the	output	of	ChatGPT	isn’t	good	enough	for	
GPT-4,	we	might	take	that	as	an	indicator	that	

it’s	not	good	enough	for	us,	either.

N-gram	Language	Models

N-gram	Language	Models
Most modern applications use neural network language
models. But to understand the language modeling task, we
will start with the workhorse of the language model world:
the n-gram language model.

Language	Model
Goal to predict

p Wor own

Wo Wi Wn

The cat nap

p fun two own i

How do we guess what the next word is?

I write this sitting in the kitchen…

Sentence	probability

eating
Jeffery

pleating I writethis sitting for
in thekitchen white

Zebra

Unarmmati

prank I write tan sitting
in the kitchen sink a weirdbut

Ok

If we had a big corpus, we could see how often each of these
sentences occurred:

count(“I write this sitting in the kitchen sink”) / count(“I
write this sitting in the kitchen”)

versus
count(“I write this sitting in the kitchen knife”) / count(“I

write this sitting in the kitchen”)
versus

count(“I write this sitting in the kitchen chair”) / count(“I
write this sitting in the kitchen”)

This is called a maximum likelihood estimation.

Frequency	Counts

But what if we never see any of these sentences?

0/ count(“I write this sitting in the kitchen”)
versus

0/ count(“I write this sitting in the kitchen”)
versus

0/ count(“I write this sitting in the kitchen”)

The probabilities would all be zero. But intuitively, some
of these sentences still seem more likely than others…

Frequency	Counts

Chain Rule of Probability:

P(X1…Xn) = P(X1)P(X2|X1)P(X3|X1:2) . . . P(Xn|X1:n−1)

 = P(Xk|X1:k−1)Πn
k=1

The	Chain	Rule

P Wn PCW Pfwzlw Plus wire Plan w Wn

TIE PlwalWe i

Great, so now we have:

P(“I”)P(“write”|“I”)P("this"|"I write") . . . P("sink"|"I
write this sitting in the kitchen")

versus
P(“I”)P(“write”|“I”)P("this"|"I write") . . . P("knife"|"I

write this sitting in the kitchen")
versus

P(“I”)P(“write”|“I”)P("this"|"I write") . . . P("chair"|"I
write this sitting in the kitchen")

The	Chain	Rule

