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[ntuition: training a 2-layer Network

A

Training instance



Intuition: Training a 2-layer network

For every training tuple (x, y)

o Run forward computation to find our estimate 3\/

° Run backward computation to update weights:
> For every output node

o Compute loss L between true y and the estimated 9
> For every weight w from hidden layer to the output layer
o Update the weight
> For every hidden node
> Assess how much blame it deserves for the current answer

> For every weight w from input layer to the hidden layer
o Update the weight



Loss Function: a measure of how far off the
current answer is from the right answer.

For binary logistic regression, we use cross
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Gradient descent for weight updates
‘Frx;w) = :‘1
The derivativeof the loss function with respect to weights
tells us how to adjust the weights to make better predictions.

Derivative of the loss function: ~ © LCPCx; "_3,;13
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Where did that derivative come from?
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Each node takes an upstream gradient, multiplies it by the local
gradient (the gradient of its output with respect to its input), and
uses the chain rule to compute a downstream gradient to be

passed on to a prior node.

A node may have multiple local gradients if it has multiple inputs.



Backward Differentiation

For training, we need the derivative of the loss with respect
to each weight in every layer of the network.

Problem: the derivatives on the prior slide only give the
updates for one weight layer: the last one, since loss is
computed only at the very end of the network!

Solution: error backpropagation (Rumelhart, Hinton, Williams,
1986)

Backprop is a special case of backward ditferentiation



Computation Graphs

A computation graph represents the process
of computing a mathematical expression

Computations:

d = 2b




Computation Graphs

A computation graph represents the process
of computing a mathematical expression

L(a,b,c) = c(a+2b) Computations:
d = 2%b
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Backwards differentiation in computation graphs

The importance of the computation graph
comes from the backward pass

This is used to compute the derivatives that
we’ll need for the weight update.



The chain rule

Computing the derivative of a composite function:

df du dv
f@=uow) =

df du dv dw
dx dv dw dx

J (%) = u(v(w(x)))
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Summary

For training, we need the derivative of the loss with
respect to weights in early layers of the network

» Butloss is computed only at the very end of the
network!

Solution: backward differentiation

Given a computation graph and the derivatives of all the
functions in it we can automatically compute the
derivative of the loss with respect to these early weights.
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Language Modeling



Language Modeling

Language modeling is the task of predicting what comes next in a
sentence.

Language modeling can also assign probabilities to sequences of text.

In addition, it turns out to be a useful and powerful way to do
representation learning.

Language models are used in:
Google search
Auto-correction / auto-complete
Speech recognition

Voice assistants
Chatbots
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https://www.youtube.com/watch?v=2lR8Fzays4I

Chiang (2023):
ChatGPT is a Blurry JPEG of the Web



... H]allucinations are anything but
surprising; if a compression algorithm is
designed to reconstruct text after ninety-

nine per cent of the original has been
discarded, we should expect that
significant portions of what it generates
will be entirely fabricated.



[f a large language model has compiled a
vast number of correlations between
economic terms—so many that it can offer
plausible responses to a wide variety of
questions—should we say that it actually
understands economic theory?



Imagine what it would look like if ChatGPT
were a lossless algorithm. If that were the case,
it would always answer questions by providing
a verbatim quote from a relevant Web page. We
would probably regard the software as only a
slight improvement over a conventional search
engine, and be less impressed by it.|...] When
we're dealing with sequences of words, lossy
compression looks smarter than lossless
compression.



There’s a type of blurriness that is acceptable,
which is the re-stating of information in
different words. Then there’s the blurriness of
outright fabrication, which we consider
unacceptable when we're looking for facts.



Some might say that the output of large
language models doesn’t look all that
different from a human writer’s first draft,
but, again, I think this is a supertficial
resemblance. Your first draft isn’'t an
unoriginal idea expressed clearly; it's an
original idea expressed poorly, and it is
accompanied by your amorphous
dissatisfaction, your awareness of the
distance between what it says and what you
want it to say.



Indeed, a usetul criterion for gauging a large
language model’s quality might be the
willingness of a company to use the text that it
generates as training material for a new model.
[f the output of ChatGPT isn't good enough for
GPT-4, we might take that as an indicator that
it's not good enough for us, either:



THE CURSE OF RECURSION:
TRAINING ON GENERATED DATA MAKES MODELS FORGET

Ilia Shumailov* Zakhar Shumaylov* Yiren Zhao Yarin Gal
University of Oxford University of Cambridge Imperial College London University of Oxford

Nicolas Papernot

Ross Anderson

University of Toronto & Vector Institute University of Cambridge & University of Edinburgh

ABSTRACT

Stable Diffusion revolutionised image creation from descriptiy
demonstrated astonishing performance across a variety of lang
language models to the general public. It is now clear that larg
stay, and will bring about drastic change in the whole ecosys
paper we consider what the future might hold. What will hapg
much of the language found online? We find that use of mode
irreversible defects in the resulting models, where tails of the
We refer to this effect as model collaps and show that it cg
Gaussian Mixture Models and LLMs. We build theoretical 1
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Figure 1: Model Collapse refers to a degenerative learning
process where models start forgetting improbable events
over time, as the model becomes poisoned with its own
projection of reality.




N-gram Language Models



N-gram Language Models

Most modern applications use neural network language
models. But to understand the language modeling task, we

will start with the workhorse of the language model world:
the n-gram language model.




Language Model
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Sentence probability

¢

How do we guess what the next word is?

[ write this sitting in the kitchen... €
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Frequency Counts

*

If we had a big corpus, we could see how often each of these
sentences occurred:

count(“I write this sitting in the kitchen'sink”) / count(“I
write this sitting in the kitchen”)
versus
count(“I write this sitting in the kitchen‘'knife”) / count(“I
write this sitting in the kitchen”)
versus
count(“I write this sitting in the kitchen chair”) / count(“I
write this sitting in the kitchen”)

This is called a maximum likelihood estimation.



Frequency Counts

But what if we never see any of these sentences?

0/ count(“I write this sitting in the kitchen”)
versus

0/ count(“I write this sitting in the kitchen”)
versus

0/ count(“I write this sitting in the kitchen”)

The probabilities would all be zero. But intuitively, some
of these sentences still seem more likely than others...



The Chain Rule

Chain Rule of Probability:

P(Xi...Xn) = P(X1)P(X2 | X1)P(X3 1 X12) . . . P(Xn | X1:n-1)
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The Chain Rule

Great, so now we have:

P(“T”)P(“write” | “I”)P("this" | "I write") . . . P("sink" | "]
write this sitting in the kitchen")
versus
P(“T”)P(“write” | “I”)P("this" | "T write") . . . P("knife" | "I
write this sitting in the kitchen")
versus
P(“T”)P(“write” | “1”)P("this" | "I write") . . . P("chair" | "]
write this sitting in the kitchen")



