
Prof. Carolyn Anderson
Wellesley College

CS	232:		
Arti+icial	Intelligence Fall	2023

 



https://www.tiktok.com/@chelseaparlettpelleriti/video/7072586373064248622?is_from_webapp=1&sender_device=pc&web_id=7159271848050869802

https://www.tiktok.com/@chelseaparlettpelleriti/video/7072586373064248622?is_from_webapp=1&sender_device=pc&web_id7066150910241867269


Recap



AI	Tasks
Search Classification Generation

September October November

Informed	Search
Regression

Neural	Networks

Language	Models
Image	Generation

Uninformed	Search

Adversarial	Games
Navigation

Learning	Under		
Uncertainty

Sentiment	Analysis

Image	Classification
Text	Classification

Chatbots
Finetuning

Prompt	Engineering



Chiang	(2023):		
ChatGPT	is	a	Blurry	JPEG	of	the	Web	



[...	H]allucinations	are	anything	but	
surprising;	if	a	compression	algorithm	is	
designed	to	reconstruct	text	after	ninety-
nine	per	cent	of	the	original	has	been	
discarded,	we	should	expect	that	

significant	portions	of	what	it	generates	
will	be	entirely	fabricated.



If	a	large	language	model	has	compiled	a	
vast	number	of	correlations	between	

economic	terms—so	many	that	it	can	offer	
plausible	responses	to	a	wide	variety	of	
questions—should	we	say	that	it	actually	

understands	economic	theory?



Imagine	what	it	would	look	like	if	ChatGPT	
were	a	lossless	algorithm.	If	that	were	the	case,	
it	would	always	answer	questions	by	providing	
a	verbatim	quote	from	a	relevant	Web	page.	We	
would	probably	regard	the	software	as	only	a	
slight	improvement	over	a	conventional	search	
engine,	and	be	less	impressed	by	it.[...]	When	
we’re	dealing	with	sequences	of	words,	lossy	
compression	looks	smarter	than	lossless	
compression.



There’s	a	type	of	blurriness	that	is	acceptable,	
which	is	the	re-stating	of	information	in	

different	words.	Then	there’s	the	blurriness	of	
outright	fabrication,	which	we	consider	
unacceptable	when	we’re	looking	for	facts.



Some	might	say	that	the	output	of	large	
language	models	doesn’t	look	all	that	
different	from	a	human	writer’s	first	draft,	
but,	again,	I	think	this	is	a	superficial	
resemblance.	Your	first	draft	isn’t	an	
unoriginal	idea	expressed	clearly;	it’s	an	
original	idea	expressed	poorly,	and	it	is	
accompanied	by	your	amorphous	
dissatisfaction,	your	awareness	of	the	
distance	between	what	it	says	and	what	you	
want	it	to	say.



Indeed,	a	useful	criterion	for	gauging	a	large	
language	model’s	quality	might	be	the	

willingness	of	a	company	to	use	the	text	that	it	
generates	as	training	material	for	a	new	model.	
If	the	output	of	ChatGPT	isn’t	good	enough	for	
GPT-4,	we	might	take	that	as	an	indicator	that	

it’s	not	good	enough	for	us,	either.





Language	Modeling



A language model is a model that computes the 
probability of a sentence in a language:

p(w0, … , wn)

A language model can also be used to compute the 
probability of the next word in a sentence:

p(wn|w0, … , wn-1)

Language	Model



How do we guess what the next word is?

I write this sitting in the kitchen…

Answer: try out different words and compare their 
likelihood.

p(I write this sitting in the kitchen sink)
versus

p(I write this sitting in the kitchen knife)
versus

p(I write this sitting in the kitchen chair)

Sentence	probability



Chain Rule of Probability:

P(X1…Xn) = P(X1)P(X2|X1)P(X3|X1:2) . . . P(Xn|X1:n−1)

                   =  P(Xk|X1:k−1)

Applied to a sentence:

P(w1:n) = P(w1)P(w2|w1)P(w3|w1:2) . . . P(wn|w1:n−1)

             =  P(wk|w1:k−1) 

P(“I write this sitting in the kitchen sink”) = 
P(“I”)P(“write”|“I”)P("this"|"I write") . . . P("sink"|"I write 
this sitting in the kitchen")

Πn
k=1

Πn
k=1

The	Chain	Rule

I write I this Imite sink I writethis sitting
in the
kitchen



Great, so now we have:

P(“I”)P(“write”|“I”)P("this"|"I write") . . . P("sink"|"I 
write this sitting in the kitchen")

versus
P(“I”)P(“write”|“I”)P("this"|"I write") . . . P("knife"|"I 

write this sitting in the kitchen")
versus

P(“I”)P(“write”|“I”)P("this"|"I write") . . . P("chair"|"I 
write this sitting in the kitchen")

The	Chain	Rule



But, since we never saw "I write this sitting in the kitchen 
sink", we still don’t have a way to calculate 

p("sink"|"I write this sitting in the kitchen")

What can we do?

The	Chain	Rule



Markov	Assumption
For a very simple language model, we could estimate this 
conditional probability by looking at a smaller context 
window: a single word.

p sink 1 kitchen print I writethe sitting in
the kitchen

p knife I Kitchen p sink kitchen

p chair kitchen



Bigram	language	model
A bigram language model is a language model that makes 
a Markov assumption: the probability of a word is 
conditioned solely on the previous word. 

P fun I wi ny pCount way

p I write this sitting in the kitchensink a

PCI pCartel
I p thislarite p sitting

this printsitting

p thelin p titanite plsink1 titan



Bigram	language	model
In a bigram model, we have:

p("I")p("write"|"I")p("this"|"write")p("sitting"|"this")p("in"|"s
itting")p("the"|"in")p("kitchen"|"the")p("sink"|"kitchen")

versus
p("I")p("write"|"I")p("this"|"write")p("sitting"|"this")p("in"|"s

itting")p("the"|"in")p("kitchen"|"the")p("knife"|"kitchen")
versus

p("I")p("write"|"I")p("this"|"write")p("sitting"|"this")p("in"|"s
itting")p("the"|"in")p("kitchen"|"the")p("chair"|"kitchen")



Maximum	Likelihood	Estimates:	Bigram
Let’s get some counts! Let's use the Brown corpus to 
estimate the probabilities with a Maximum Likelihood 
Estimate.

prsinklkitchen 138

pl knife kitchen
2 138

p chair kitchen 1 138

I write this sitting in the kitchen sink

is an winner



Generalizing	to	n-grams
We can improve our context by looking at larger window 
sizes. 

Our bigram model predicts "knife" is a better completion 
than "chair" in our context, because kitchen knives are 
more frequent than kitchen chairs. 

If we considered more context, we might be able to 
capture that "in the kitchen knife" is not a good 
completion because it is rare to be in knives. 



Generalizing	the	n-gram	model
Generic n-gram model:

P(wn|w1:n−1) ≈ P(wn|wn−N+1:n−1) 

where N is the context window



Language	Models	for	
Language	Generation



Language	Generation
So far we have used language models to predict the next 
word in a sequence and estimate the probability of a 
sentence. 

How do we generate sentences?



Language	Generation

 P(english|want)  = .0011
 P(chinese|want) =  .0065
 P(to|want) = .66
 P(eat | to) = .28
 P(food | to) = 0
 P(want | spend) = 0
 P (i | <s>) = .25

Example adapted from Jurafsky & Martin, ed. 3

We sample words according to their estimated probabilities:

Bigrammodd



Language	Generation

✦ Choose a random bigram (<s>, w) according to its probability.
✦ Then choose a random bigram (w, x) according to its probability.
✦ Repeat until we choose </s>.

<s> I
    I want
      want to
           to eat
              eat Chinese
                  Chinese food
                          food  </s>
I want to eat Chinese food

Example adapted from Jurafsky & Martin, ed. 3

cat English

o



Evaluation

Slides adapted from Jurafsky & Martin, ed. 3



Evaluation:	How	good	is	our	model?
 Does our language model prefer good sentences to bad ones?

 Does it assign higher probability to “real” or “frequently 
observed” sentences than “ungrammatical” or “rarely 
observed” sentences?



Perplexity

Perplexity is the inverse probability 
of the test set, normalized by the 
number of words.

Minimizing perplexity is the same as maximizing probability

The best language model is one that best predicts an 
unseen test set (gives the highest P(sentence)).

Tammy are
all
words

m

fest
text

probability
ofthe

actualtext

f

according

to ormodel

y
nonwiddability

norm length



Lower	perplexity	=	better	model

 Training 38 million words, test 1.5 million words, WSJ

N-gram 
Order

Unigram Bigram Trigram

Perplexity 962 170 109



Neural	Language	Models



Slides adapted from Mohit Iyyer



Slides adapted from Mohit Iyyer



Title	Text

7

Problems with	n-gram	Language	Models

2/1/1813

Storage:	Need	to	store	count	
for	all	possible	n-grams.	So	
model	size	is	O(exp(n)).

Increasing	nmakes	model	size	huge!

Slides adapted from Mohit Iyyer



Title	Textanother issue:
• We treat all words / prefixes independently of 

each other!

8

students opened their ___
pupils opened their ___
scholars opened their ___
undergraduates opened their ___
students turned the pages of their ___
students attentively perused their ___
…

Shouldn’t we share 
information across these 

semantically-similar prefixes?

Slides adapted from Mohit Iyyer



How	Do	We	Represent	Text?
To feed text into a neural network, we need to turn it into 
numbers. In our regression classifier, we did this by 
hand-crafting features. Now we're going to use neural 
networks to learn representations for us.



We represent text using word vectors.
Idea: a word meaning is based on its distance from other 
word meanings.
Each word = a vector   (not just "good" or "w45")
Similar words are "nearby in seman+c space"

We build this space automatically by seeing which words 
are nearby in text

Word	Embeddings



Word	Embeddingswords as basic building blocks
• represent words with low-dimensional vectors called 
embeddings (Mikolov et al., NIPS 2013)

king = 
[0.23, 1.3, -0.3, 0.43]



46

Neural Net Classification with embeddings as input features!



Issue: texts come in different sizes

This assumes a fixed size length (3)!   

   
Some simple solutions (more sophisticated solutions later) 
1. Make the input the length of the longest review 
• If shorter then pad with zero embeddings 
• Truncate if you get longer reviews at test time 

2. Create a single "sentence embedding" (the same 
dimensionality as a word) to represent all the words 

• Take the mean of all the word embeddings 
• Take the element-wise max of all the word embeddings 
• For each dimension, pick the max value from all words

47


