CS 232:

Fall 2023
Artificial Intelligence a

Prof. Carolyn Anderson
Wellesley College



d

TikTok

2 ® chelseaparlettpelleriti

P 339 views 0:00/0:09 <y .~

https:/ / www.tiktok.com / @chelseaparlettpelleriti/ video / 7072586373064248622?is_from_webapp=1&sender_device=pc&web_id=7159271848050869802


https://www.tiktok.com/@chelseaparlettpelleriti/video/7072586373064248622?is_from_webapp=1&sender_device=pc&web_id7066150910241867269

Recap



Search

Uninformed Search

Informed Search
Adversarial Games
Navigation

Learning Under
Uncertainty

September

Al Tasks

Classification

Regression
Sentiment Analysis
Neural Networks
Image Classification

Text Classification

October

(Generation

Language Models
Image Generation

Chatbots
Finetuning

Prompt Engineering

November



Chiang (2023):
ChatGPT is a Blurry JPEG of the Web



... H]allucinations are anything but
surprising; if a compression algorithm is
designed to reconstruct text after ninety-

nine per cent of the original has been
discarded, we should expect that
significant portions of what it generates
will be entirely fabricated.



[f a large language model has compiled a
vast number of correlations between
economic terms—so many that it can offer
plausible responses to a wide variety of
questions—should we say that it actually
understands economic theory?



Imagine what it would look like if ChatGPT
were a lossless algorithm. If that were the case,
it would always answer questions by providing
a verbatim quote from a relevant Web page. We
would probably regard the software as only a
slight improvement over a conventional search
engine, and be less impressed by it.|...] When
we're dealing with sequences of words, lossy
compression looks smarter than lossless
compression.



There’s a type of blurriness that is acceptable,
which is the re-stating of information in
different words. Then there’s the blurriness of
outright fabrication, which we consider
unacceptable when we're looking for facts.



Some might say that the output of large
language models doesn’t look all that
different from a human writer’s first draft,
but, again, I think this is a supertficial
resemblance. Your first draft isn’'t an
unoriginal idea expressed clearly; it's an
original idea expressed poorly, and it is
accompanied by your amorphous
dissatisfaction, your awareness of the
distance between what it says and what you
want it to say.



Indeed, a usetul criterion for gauging a large
language model’s quality might be the
willingness of a company to use the text that it
generates as training material for a new model.
[f the output of ChatGPT isn't good enough for
GPT-4, we might take that as an indicator that
it's not good enough for us, either:



THE CURSE OF RECURSION:
TRAINING ON GENERATED DATA MAKES MODELS FORGET

Ilia Shumailov* Zakhar Shumaylov* Yiren Zhao Yarin Gal
University of Oxford University of Cambridge Imperial College London University of Oxford

Nicolas Papernot

Ross Anderson

University of Toronto & Vector Institute University of Cambridge & University of Edinburgh

ABSTRACT

Stable Diffusion revolutionised image creation from descriptiy
demonstrated astonishing performance across a variety of lang
language models to the general public. It is now clear that larg
stay, and will bring about drastic change in the whole ecosys
paper we consider what the future might hold. What will hapg
much of the language found online? We find that use of mode
irreversible defects in the resulting models, where tails of the
We refer to this effect as model collaps and show that it cg
Gaussian Mixture Models and LLMs. We build theoretical 1

mnstuncr 14 srdai~nrriter asmannant all TaawinAad ~AmAvativra saan~ndAla |

Probable events are over-estimated
wa(or\obo\ue events are under-estimated

Finite Sa\mphmj / \ Appr‘oxEmoCte, F?‘tting
Dato\"\::

Probable events poison re_ah‘ty

Tails shrink over time

Figure 1: Model Collapse refers to a degenerative learning
process where models start forgetting improbable events
over time, as the model becomes poisoned with its own
projection of reality.




Language Modeling



Language Model

Alanguage model is a model that computes the
probability of a sentence in a language:

p(wo, ..., Wn)

Alanguage model can also be used to compute the
probability of the next word in a sentence:

p(Wnlwo, ..., Wn)



Sentence probability

How do we guess what the next word is?
[ write this sitting in the kitchen...

Answer: try out different words and compare their
likelihood.

p(I write this sitting in the kitchen'sink)
versus

p(I write this sitting in the kitchen knife)
versus

p(I write this sitting in the kitchen chair)



The Chain Rule

¢

Chain Rule of Probability:

P(Xi...Xn) = P(X1)P(X2 | X1)P(X3 1 X12) . . . P(Xn | X1:0-1)
=IT_, P(Xk | X1x-1)

Applied to a sentence; |
Toowne e Tonle anfe S Wike b STty
P(win) = P(w1)P(wa | wi1)P(ws Il wiz) ... P(Wnlwin-1) A
krtden
=IT_, P(wk I wik-1)

P(“T write this sitting in the kitchen sink”) =
P(“T")P(“write” | “I”)P("this" | "T write") . .. P("sink" | "I write
this sitting in the kitchen")



The Chain Rule

Great, so now we have:

P(“T”)P(“write” | “I”)P("this" |."I write") .« . P("sink" | "I
write this sitting in the kitchen")
Versus
P(“T”)P(“write” | “I”)P("this" | "I write") ... P("knife" | "I
write this sitting in the kitchen")
Versus
P(“T”)P(“write” | “1”)P("this" | "Lwrite")..". . P("chair" | "I
write this sitting in the kitchen")



The Chain Rule

| ¢

But, since we never saw "I write this sitting in the kitchen

sink", we still don’t have a way to calculate
p("sink" | "T write this sitting in the kitchen")

What can we do?



Markov Assumption

* ¢

For a very simple language model, we could estimate this
conditional probability by looking at a smaller context
window: a single word.

( (snk | L write e gimhineg N
0K L 9
@ 51 \ ¥W> F TN H\M/\m}

P (pote | itoren ) = P IME [ 1cen)
g)(o\/WY | Kun)



Bigram language model

’ ¢

A bigram language model is a language model that makes
a Markov assumption: the probability of a word is
conditioned solely on the previous word.

P (Wm )\/\)HV\»(B — K‘F[W"\\ \/\\V\v(>

?(Uf wite SJ‘{“\%‘/\@ mn A turen 5)“}("}”';
?Cl) (wete [T p (s [ guri+e) PC@T«WNB)«\W“S) fﬁ/) ) J;WM?B
p L ) ? [ kit | Are) P(wkl ko )



Bigram language model

¢

In a bigram model, we have:

p("T")p("write" | "T")p("this" | "write")p("sitting" | "this")p("in" | "s
itting")p("the" I "in")p("kitchen" | "the")p("sink" | "kitchen")
versus
p("T")p("write" | "T")p("this" | "write")p("sitting" | "this")p("in" | s
itting")p("the" | "in")p("kitchen" | "the")p("knife" | "kitchen")
versus
p("T")p("write" | "I")p("this" | "write")p("sitting" | "this")p("in" | s
itting")p("the" | "in")p("kitchen" | "the")p("chair" | "kitchen")



Maximum Likelihood Estimates: Bigram

¢

Let’s get some counts! Let's use the Brown corpus to
estimate the probabilities with a Maximum Likelihood

Estimate.
p sk | K dclon ) = “4/1%8
Pl knite | kituun) = %/138
P(Cy\ml | Kifden) = V(38
(g ante s sitfmg i1 K g7 SNKT
v oA WV‘M\.



Generalizing to n-grams

We can improve our context by looking at larger window
sizes.

Our bigram model predicts "knife" is a better completion
than "chair" in our context, because kitchen knives are
more frequent than kitchen chairs.

If we considered more context, we might be able to
capture that "in the kitchen knife" is not a good
completion because it is rare to be in knives.



Generalizing the n-gram model

Generic n-gram model:
P(Wn | Wl:n—l) = P(Wn | Wn—N+1:n—1)

where N is the context window



Language Models for
Language Generation



Language Generation

So far we have used language models to predict the next
word in a sequence and estimate the probability of a
sentence.

How do we generate sentences?



Language Generation

We sample words according to their estimated probabilities:

Balom  Model
P(english | want) =.0011

P(chinese | want) = .0065
P(to | want) = .66
P(eat | to) =.28
P(food | to) =0

P(want | spend) =0
PG Il<s>)=.25

Example adapted from Jurafsky & Martin, ed. 3



Language Generation

Choose a random bigram (<s>, w) according to its probability.
Then choose a random bigram (w, x) according to its probability.

Repeat until we choose </s>.

<s> T Qe& CMN\M
I want oat Ew‘\f W'

want to
to‘!li} eﬂﬁ t@aﬁ@
eat Chinese
Chinese food
food </s>

l? wanﬁ to eat Chinese food

Example adapted from Jurafsky & Martin, ed.



Evaluation

Slides adapted from Juratsky & Martin, ed. 3



Evaluation: How good is our model?

Does our language model prefer good sentences to bad ones?

Does it assign higher probability to “real” or “frequently
observed” sentences than “ungrammatical” or “rarely
observed” sentences?



Perplexity

The best language model is one that best predicts an
unseen test set (gives the highest P(sentence)).

1A
)
Perplexity is the inverse probability &\ W
of the test set, normalized by the o 3\"«
— S __ UN‘WM\ ¥,QV W
number of words. S &

iLa!
P gk
PP(W) = exp @Z log p(w; [ w;) asiés

Minimizing perplexity is the same as maximizing probability



Lower perplexity = better model

Training 38 million words, test 1.5 million words, WS]

N-gram Unigram Bigram |Trigram
Order

Perplexity



Neural Language Models



Problems with n-gram Language Models

Sparsity Problem 1

Problem: What if “students
opened their w;” never
occurred in data? Then w;
has probability 0!

count(students opened their w))

p(w; | students opened their) = _
count(students opened their)

Slides adapted from Mohit Iyyer



Problems with n-gram Language Models

Sparsity Problem 1

Problem: What if “students
opened their w;” never
occurred in data? Then w;
has probability O!

(Partial) Solution: Add small
» to count for every w; € V.
This is called smoothing.

count(students opened their w))

p(w;| students opened their) = _
count(students opened their)

Slides adapted from Mohit Iyyer



Problems with n-gram Language Models

Storage: Need to store count
for all possible n-grams. So
model size is O(exp(n)).

count(students opened their w;)

P(w:;|students opened their) =
(w] P ) count(students opened their)

Increasing n makes model size huge!

Slides adapted from Mohit Iyyer



another Issue:

e \We treat all words / prefixes independently of
each other!

students opened their __ Shouldn’t we share

pupils opened their ___ information across these

. semantically-similar prefixes?
scholars opened their i -

undergraduates opened their
students turned the pages of their

students attentively perused their

Slides adapted from Mohit Iyyer



How Do We Represent Text?

To feed text into a neural network, we need to turn it into
numbers. In our regression classifier, we did this by
hand-crafting features. Now we're going to use neural
networks to learn representations for us.



Word Embeddings

We represent text using word vectors.

Idea: a word meaning is based on its distance from other
word meanings.

Each word = a vector (not just "good" or "w,s")

Similar words are "nearby in semantic space”

We build this space automatically by seeing which words
are nearby in text

not good
o by , dislike

- " . incredibly bad
that now are d worse

oac

worsl



Word Embeddings

e represent words with low-dimensional vectors called
embeddings ikolov et al., NIPS 2013)

King =
[0.23, 1.3, -0.3, 0.43]

Italy \Nmnd

Germany —_— Rome
man walked Berlin
O O Turkey \
: w
|l uillee 0’ Ankara
. . ™ A ; )
. @) O = Russia
king . Moscow
A walking '. Canada Ottawa
queen R Japan Pk
1 O Vietnam Hanoi
swimming China Beijing

Male-Female Verb tense Country-Capital



Neural Net Classification with embeddings as input features!

p(positive sentiment|The dessert is...)

Output layer
sigmoid

U Vixd,

e (5L

\\%
Projection layer % -0 00 (F® - @ -
embeddings i [ |

. o.\‘] [.. oo @ oo .‘] 3dx1
E embedding for ~ embedding for embedding for
word 534 word 23864 word 7
The dessert IS

W1 W) V3



Issue: texts come in different sizes

@6 @ --00) (@ -+ @ -+ 09 (@@ @ -+ 00)

This assumes a fixed size length (3)! cmcidnefor  embeddingfor  embedding for
\ | |

The dessert IS

Wi W) W3

Some simple solutions (more sophisticated solutions later)

1. Make the input the length of the longest review
» If shorter then pad with zero embeddings

« Truncate if you get longer reviews at test time

2. Create a single "sentence embedding" (the same

dimensionality as a word) to represent all the words
» Take the mean of all the word embeddings

» Take the element-wise max of all the word embeddings
«  For each dimension, pick the max value from all words



