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Reminder

['m out of town for a conference most of the week
No help hours on Thursday!
Lyra has help hours on Wednesday

First Gen in CS lunch this Wednesday

CS Colloquium next Wednesday



Neural Net Classification with embeddings as input features!
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Issue: texts come in different sizes
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Some simple solutions (more sophisticated solutions later)

1. Make the input the length of the longest review
» If shorter then pad with zero embeddings

« Truncate if you get longer reviews at test time

2. Create a single "sentence embedding" (the same

dimensionality as a word) to represent all the words
» Take the mean of all the word embeddings

» Take the element-wise max of all the word embeddings
«  For each dimension, pick the max value from all words



R ecurvent Neovel Nekwork
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RNNs suffer from a bottleneck problem ¥ = (" It students opened thein

books

The current hidden representation laptops

must encode all of the information \
about the text observed so far oﬁ ’ {m
a A 200
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why is this good?

RNN Advantages:

Can process any length
input

Model size doesn’t
increase for longer input
Computation for step t
can (in theory) use
information from many
steps back

Weights are shared
across timesteps 2
representations are
shared

RNN Disadvantages:

Recurrent computation
is slow

In practice, difficult to
access information from

_many steps back

g = P(a:(5)|the students opened their)

books
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‘you can’t cram the meaning
of a whole %&@#&ing

sentence into a single
$*(&@ing vector!”

— Ray Mooney (NLP professor at UT Austin)
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idea: what if we use multiple vectors”?

A2

—> 0000

\4
> 0000

—> 0000
—> 0000

This representation needs to

the students opened their | capture all information about
“the students opened their”
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idea: what if we use multiple vectors”?

A2

—> 0000

\4
> 0000

—> 0000
—> 0000

This representation needs to
the students opened their | capture all information about
“the students opened their”

Instead of this, let’s try: I:S e st
(all 4 hidden states!)

the students opened their =
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The solution: attention

€[ Le dhee esr ;mwﬁj
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* Attention mechanisms (Bahdanau et al.,

2015) allow language models to focus on a

particular part of the olbbserved context at
each time step

Originally developed for machine translation, and

Intuitively similar to word alignments between
different languages
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How does it work"?

® |n general, we have a single query vector and
multiple key vectors. \We want to score each

guery-key pair

in a neural language model, what are the queries and keys?
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What Is Attention?
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What Is Attention?
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What Is Attention?
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What Is Attention?

Q= Softmex (ax)



Vicki

@vboykis
They don’t tell you this in the paper (well they do but you have to read it
like 15 times)

Multiplying
a lot of vectors
a lot of times
with scaled softmax

Attention

6:20 PM - Feb 22, 2023 - 88.1K Views



Why dot product?

Dot product provides a measure of similarity between keys
and queries.

But you might be wondering: why do we want to pay attention
to words that are similar to the current word?



Why dot product?

Dot product provides a measure of similarity between keys
and queries.

But you might be wondering: why do we want to pay attention
to words that are similar to the current word?
Consider:

My brother, a chemist, was late yesterday because he missed the bus.
When he arrived, he was surprised to find that his lab




Why dot product?

“ Dot product provides a measure of similarity between keys
and queries.

* But you might be wondering: why do we want to pay attention
to words that are similar to the current word?
Consider:

My brother, a chemist, was late yesterday because he missed the bus.
When he arrived, he was surprised to find that his lab
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Attention mechanisms in neural language models
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Attention mechanisms in neural language models

Attention

scores

I_H

dot product with keys
(encoder hidden states)
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the students opened their
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Hidden state at
current time step
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Attention mechanisms in neural language models
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Attention mechanisms in neural language models

At this time step, the attention
distribution is focused on the first
word of the sequence (“the”)
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iINnto a probability distribution

Attention
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the students opened their books
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Attention

Attention

Attention mechanisms in neural language models

distribution

scores

Attention
output

We use the attention distribution to

a
<

compute a weighted average of
the hidden states.

Intuitively, the resulting attention

output contains information from

hidden states that received high
attention scores

—> 0000
—> 0000
—> 0000

|

the students opened their

books

Slides adapted from Mohit Iyyer



Attention

Attention

Sequence-to-sequence with attention

Attention unwillingly

output T .
c : Concatenate (or otherwise
2 T w Y1 compose) the attention output with
2 { H A the current hidden state, then pass
k% Y through a softmax layer to predict
©
the next word
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Attention

Attention

Sequence-to-sequence with attention

Attention to
output

f_H

distribution

scores
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: : decoder, second time step
the students opened their books unwillingly
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e Attention solves the bottleneck problem

e Attention allows decoder to look directly at source; bypass bottleneck

e Attention helps with vanishing gradient problem
* Provides shortcut to faraway states

e Attention provides some interpretability

* By inspecting attention distribution, we can see
what the decoder was focusing on

Les
éauvres J
sont
démunis

* We get alignment for freel

e This is cool because we never explicitly trained
an alignment system

* The network just learned alignment by itself
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[Vaswani et al. 2017]

Self-attention
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[Vaswani et al. 2017]

Self-attention
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[Vaswani et al. 2017]

Self-attention
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Slides by Emma Strubell! . [Vaswani et al. 2017]
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Slides by Emma Strubell! . [Vaswani et al. 2017]
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Slides by Emma Strubell! | [Vaswani et al. 2017]
Multi-head self-attention
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Slides by Emma Strubell! | [Vaswani et al. 2017]
Multi-head self-attention
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Slides by Emma Strubell! | [Vaswani et al. 2017]
Multi-head self-attention
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Slides by Emma Strubell! . .
I\/Iultr—head selrc attention

[Vaswani et al. 2017]
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Slides by Emma Strubell! | [Vaswani et al. 2017]
Multi-head self-attention

Layer J ( Multi-head self-attention + feed forward >

Layer p < Multi-head self-attention + feed forward >
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So far we’ve just talked
about self-attention... what
is all this other stuff?
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Position embeddings are added to each
word embedding. Otherwise, since we

l
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Residual connections, which mean thét we
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output, help improve gradient flow
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Output
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|

Softmax

A feed-forward layer on top of the attéhtion— ~

weighted averaged value vectors allows us N

to add more parameters / nonlinearity
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Output

(shifted right)

Probafbilities
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Moving onto the decoder, which
takes in English sequences that
have been shifted to the right
(e.g., <START> schools opened

their)
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0.0 A
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5.0 1

7.5 1

10.0 1
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15.0 1

17.5 1

We first have an instance of
masked self attention. Since
the decoder is responsible

for predicting the English
words, we need to apply

masking as we saw before.
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0.0 A

25 1

5.0 1

7.5 1

10.0 1

125 1

15.0 1

17.5 1

We first have an instance of
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Now, we have cross attention,
which connects the decoder to
the encoder by enabling it to
attend over the encoder’s final
hidden states.
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