Computer Vision

Slides adapted from Mohit Iyyer

grayscale images are matrices

what range of values can each pixel take?

Slides adapted from Mohit Iyyer

color images are tensors

channel x height x width

Channels are usually RGB: Red, Green, and Blue Other color spaces: HSV, HSL, LUV, XYZ, Lab, CMYK, etc

Convolutional Neural Networks

Convolution operator

Image Credit: http://what-when-how.com/introduction-to-video-and-image-processing/neighborhoodsprocessing-introduction-to-video-and-image-processing/neighborhoodsprocessing-part-1/

demo: http://setosa.io/ev/image-kernels/

Slides adapted from Mohit Iyyer

Convolutional Layer (with 4 filters)

Output: 4x224x224 if zero padding, and stride = 1

Slides adapted from Mohit Iyyer

pooling layers also used to reduce dimensionality

Convolutional Layers: slide a set of small filters over the image

Single depth slice

* *Pooling Layers:* reduce dimensionality of representation

 1
 1
 2
 4

 5
 6
 7
 8

 3
 2
 1
 0

 1
 2
 3
 4

max pool with 2x2 filters and stride 2

6	8
3	4

image: https://cs231n.github.io/convolutional-networks/

why reduce dimensionality?

Alexnet

ImageNet Classification with Deep Convolutional Neural Networks

Alex Krizhevsky University of Toronto kriz@cs.utoronto.ca Ilya Sutskever University of Toronto ilya@cs.utoronto.ca

Geoffrey E. Hinton University of Toronto hinton@cs.utoronto.ca

the paper that started the deep learning revolution!

image classification

Classify an image into 1000 possible classes: e.g. Abyssinian cat, Bulldog, French Terrier, Cormorant, Chickadee,

red fox, banjo, barbell, hourglass, knot, maze, viaduct, etc.

cat, tabby cat (0.71) Egyptian cat (0.22) red fox (0.11)

train on the ImageNet challenge dataset, ~1.2 million images

Slides adapted from Mohit Iyyer

Alexnet

https://www.saagie.com/fr/blog/objectdetection-part1 Slides adapted from Mohit Iyyer

What is happening?

https://www.saagie.com/fr/blog/objectdetection-part1 Slides adapted from Mohit Iyyer at the end of the day, we generate a fixed size vector from an image and run a classifier over it

Slides adapted from Mohit Iyyer

Adding More Layers

```
def make_model(input_shape, num_classes):
    inputs = keras.Input(shape=input_shape)
    x = layers.Conv2D(8, (5, 5), activation='relu', strides=1)(inputs)
    x = layers.MaxPooling2D((2, 2))(x)
   x = layers.Conv2D(16, (5, 5), activation='relu', strides=1)(x)
    x = layers.MaxPooling2D((2, 2))(x)
    x = layers.Flatten()(x)
    if num_classes == 2:
        activation = "sigmoid"
        units = 1
    else:
        activation = "softmax"
        units = num_classes
    outputs = layers.Dense(units, activation=activation)(x)
    return keras.Model(inputs, outputs)
model = make_model(input_shape=image_size+(1,), num_classes=2)
keras.utils.plot_model(model, show_shapes=True)
```

New Architecture

Auto-Encoders

Auto-encoders

Auto-encoders are a class of neural networks that do not require labeled data.

Supervised NNs: predict the **output** given the **input**.

Auto-encoders: predict the **input** given the **input**.

Key idea: select features by **reducing then increasing** dimensionality.

Normal NN goes:

Auto-encoder goes:

shutterstock.com · 451203238

shutterstock.com · 451203238

Auto-Encoder Architecture

www.jeremyjordan.me/autoencoders

Auto-Encoders as Dimensionality Reduction

Auto-encoders are a more powerful form of dimensionality reduction than traditional techniques like PCA, because they can learn nonlinear transformations.

Linear vs nonlinear dimensionality reduction

www.jeremyjordan.me/autoencoders

Encoder

Model: "sequential_6"

conv2d_9 (Conv2D)	(None, 32, 32, 32)	320
dropout_18 (Dropout)	(None, 32, 32, 32)	0
conv2d_10 (Conv2D)	(None, 16, 16, 64)	18496
dropout_19 (Dropout)	(None, 16, 16, 64)	0
conv2d_11 (Conv2D)	(None, 8, 8, 128)	73856
dropout_20 (Dropout)	(None, 8, 8, 128)	0
flatten_3 (Flatten)	(None, 8192)	0
dense_6 (Dense)	(None, 128)	1048704

Decoder

Layer (type)	Output Shape	Param #
dense_7 (Dense)	(None, 8192)	1056768
reshape_3 (Reshape)	(None, 8, 8, 128)	0
conv2d_transpose_12 (Conv2D Transpose)	(None, 16, 16, 128)	147584
dropout_21 (Dropout)	(None, 16, 16, 128)	0
conv2d_transpose_13 (Conv2D Transpose)	(None, 32, 32, 64)	73792
dropout_22 (Dropout)	(None, 32, 32, 64)	0
conv2d_transpose_14 (Conv2D Transpose)	(None, 64, 64, 32)	18464
dropout_23 (Dropout)	(None, 64, 64, 32)	0
conv2d_transpose_15 (Conv2D Transpose)	(None, 64, 64, 1)	289
======================================		========

Non-trainable params: 1,296,

Input, Output, Difference

Epoch 1

original

reconstructed

Difference

original

reconstructed reconstructed

Difference

reconstructed

Difference

original

Difference

Epoch 10

reconstructed

Difference

original

reconstructed

original

reconstructed

Difference

Using Decoder to Generate

Input noise to the decoder to make it hallucinate a cat:

x = autoencoder.decoder(np.random.randn(1, 128)).numpy()
plt.imshow(x[0, :, :, 0], cmap='gray')

Stable Diffusion

Stable Diffusion

3 components:

- 1. VAE: an auto-encoder to map images to a latent space
- 2. U-Net: an architecture that learns to denoise images
- 3. CLIP: a text-encoder to allow multi-modal input

VAE: variational autoencoder

VAE is an encoder/decoder model.

The encoder maps an input image (pixels) to a lowerdimension latent space.

The decoder takes the output of the model and maps it back to an image in pixels.

U-Net model (auto-encoder)

https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/diffusers_intro.ipynb

Iteratively Denoising

CLIP: a text encoder for multi-modal input

Objective: given a batch of text and image inputs, predict the correct image-text pairings.

Learning Transferable Visual Models From Natural Language Supervision

Alec Radford^{*1} Jong Wook Kim^{*1} Chris Hallacy¹ Aditya Ramesh¹ Gabriel Goh¹ Sandhini Agarwal¹ Girish Sastry¹ Amanda Askell¹ Pamela Mishkin¹ Jack Clark¹ Gretchen Krueger¹ Ilya Sutskever¹

Abstract

State-of-the-art computer vision systems are trained to predict a fixed set of predetermined object categories. This restricted form of supervision limits their generality and usability since additional labeled data is needed to specify any other visual concept. Learning directly from raw text about images is a promising alternative which leverages a much broader source of supervision. We demonstrate that the simple pre-training task Task-agnostic objectives such as autoregressive and masked language modeling have scaled across many orders of magnitude in compute, model capacity, and data, steadily improving capabilities. The development of "text-to-text" as a standardized input-output interface (McCann et al., 2018; Radford et al., 2019; Raffel et al., 2019) has enabled taskagnostic architectures to zero-shot transfer to downstream datasets removing the need for specialized output heads or dataset specific customization. Flagship systems like GPT-3 (Brown et al., 2020) are now competitive across many tasks with bespoke models while requiring little to no dataset

CLIP: a text encoder for multi-modal input

Stable Diffusion: putting the pieces together

