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Reminders

Homework 2 will be released today
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[ have help hours Thursday from #5:30pm

Reading for next Tuesday: YLLATAILY Chapter 3-4
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YLLATAILY Chapters 1-2



Big Ideas

Rule-based programming
Pro: we understand the rules the program is using
Con: we have to write the rules

Supervised learning
Pro: Al generates its own rules

Con: hard to understand why it's doing what it's doing



Big Ideas

Signs of Al Doom:
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There are sneaky shortcuts

The Al tried to learn from garbage data



Big Ideas

Al Weaknesses
Remembering things
Planning ahead

Data- and computation-intensive



Example Tasks
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Recap



Rational agents

¢

Given a goal, an Al agent must decide what the best action to
take 1s 1n order to reach this goal.

For complex tasks, this can mean:
gathering information
coming up a set of possible actions
welghing the best action
acting

updating and adapting based on changes to the
environment



Agent Complexity

Problem-solving agent: capable of considering a
sequence of actions that form a path to a goal state
(planning ahead).
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Search



Example search problem: Holiday in Romania
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Slides adapted from Chris Callison-Burch



Holiday in Romania

On holiday in Romania; currently in Arad
* Flight leaves tomorrow from Bucharest
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Example search problem: 8-puzzie
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Search Algorithms



Basic search algorithms: 7ree Search

Generalized algorithm to solve search problems
Enumerate in some order all possible paths from the initial state
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Generalized tree search
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Generalized tree search

function TREE-SEARCH(problem, strategy) return a solution or failure The strategy determines
Initialize frontier to the initial state of the problem search proceSS!
do

if the frontier is empty then return failure
choose leaf node for expansion according to(strategy)& remove from frontier
if node contains goal state then return solution

else expand the node and add resulting nodes to the frontier

Slides adapted from Chris Callison-Burch
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Search Tree Root node =
start state

Expanded nodes

Tatooine

Alderaan Onderon Endor Ryloth

Frontier Choose leaf node from frontier for expansion
according to to the search strategy

Determines the
search process

Slides adapted from Chris Callison-Burch



States Versus Nodes
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8-Puzzle Search Tree

(Nodes show state, parent, Z 2 :
children - leaving Action, Cost,
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Slides adapted from Chris Callison-Burch



Problem: Repeated states

Failure to detect repeated states can turn a linear problem into an exponential one!

Slides adapted from Chris Callison-Burch



Solution: Graph Search!
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State Space
Search Tree

Graph search

 Simple Mod from tree search: Check to see if a node has been visited
before adding to search queue
« must keep track of all possible states (can use a lot of memory)
 e.g. 8-puzzle problem, we have 9!/2 =182K states

Slides adapted from Chris Callison-Burch



Graph Search vs Tree Search

function TREE-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state of problem
loop do
if the frontier is empty then return failure
choose a leaf nose and remove it from the frontier
if the node contains a goal state then return the corresponding solution
expand the chosen node, adding the resulting nodes to the frontier

function GRAPH-SEARCH(problem) returns a solution, or failure

initialize the frontier using the initial state of problem

initialize the explored set to be empty

loop do
if the frontier is empty then return failure
choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution
add node to the explored set
expand the chosen node, adding the resulting nodes to the frontier

only if not in the frontier of explored set

Slides adapted from Chris Callison-Burch



Uninformed Search



Uninformed Search

Uses only information available in problem definition

Informally:
Uninformed search: All non-goal nodes in frontier look equally good
Informed search: Some non-goal nodes can be ranked above others.

Slides adapted from Chris Callison-Burch



Breadth-First Search



Breadth-first search

|dea:
* Expand. vest unexpanded node

Implementation:

ris FIFO (First-In-First-Out) Queue:
e Put successors at the end of frontier successor list.

Slides adapted from Chris Callison-Burch



Breadth-first search

function BREADTH-FIRST-SEARCH( problem) returns a solution node or failure
node <~ NODE(problem.INITIAL)
if problem.1S-GOAL(node.STATE) then return node
frontier <—a FIFO queue, with node as an element
reached + {pmblem. IN lTlAL} Position within
while not IS-EMPTY(frontier) do queue of new items
node — PoP(frontier) determines searcf
for each child in EXPAND(problem, node) do
s <—child. STATE
if problem.1S-GOAL(s) then return child
if 5 1S not in reached then
add s to reached
add child to frontier
return failure

Slides adapted from Chris Callison-Burch



Breadth-first search

function EXPAND(problem, node) yields nodes
§4—node.STATE
for each action in problem.ACTIONS(s) do
s' < problem . RESULT(s, action)
cost <+ node.PATH-COST + problem.ACTION-COST(s, action, s')
yield NODE(STATE=s", PARENT=node, ACTION=action, PATH-COST=cost)

Node data structure contains variables like the
state, a pointer to its parent node, the action that
was used to create this state, and the path cost.

The Python yield keyword means
that we don’t have to pre-compute
a list of all successors.

Slides adapted from Chris Callison-Burch



Breadth-first search

function BREADTH-FIRST-SEARCH(problem) returns a solution node or failure
node <~ NODE(problem.INITIAL)
if problem.1S-GOAL(node.STATE) then return node
frontier < a FIFO queue, with node as an element
reached < {problem.INITIAL }
while not IS-EMPTY (frontier) do
node <+ POP(frontier)
for each child in EXPAND(problem, node) do
s < child. STATE
if problem.1S-GOAL(s) then return child
if 5 1s not in reached then
add s to reached
add child to frontier Subtle: Node inserted into
return failure

queue only after testing to
see if it is a goal state

Slides adapted from Chris Callison-Burch
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https://www.youtube.com/watch?v=x-VTfcmrLEQ

Properties of breadth-first search
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Slides adapted from Chris Callison-Burch



Exponential Space (and time) Is Not Good...

« Exponential complexity uninformed search problems
but the smallest instances.

annot be solved for any

/ requirements are a bigger problem than ¢ time.)
DEPTH NODES TIME MEMORY
2 110 0.11 milliseconds 107 kilobytes
4 11110 11 milliseconds 10.6 megabytes
6 10° 1.1 seconds 1 gigabytes
8 108 2 minutes 103 gigabytes
10 1070 3 hours 10 terabytes
12 1072 13 days 1 petabytes
14 104 3.5 years 99 petabytles

Assumes b=10, 1M nodes/sec, 1000 bytes/node

Slides adapted from Chris Callison-Burch



