CS 232:

Fall 2023
Artificial Intelligence a

Prof. Carolyn Anderson
Wellesley College

Reminders

Homework 2 will be released today
q+%0 -
[have help hours Thursday from #5:30pm

Reading for next Tuesday: YLLATAILY Chapter 3-4
o ol lp Nows stert e neck’

YLLATAILY Chapters 1-2

Big Ideas

Rule-based programming
Pro: we understand the rules the program is using
Con: we have to write the rules

Supervised learning
Pro: Al generates its own rules

Con: hard to understand why it's doing what it's doing

Big Ideas

Signs of Al Doom:

T

The pro

ne pro

D

o)

em is too hard

lem is not what we thought it was

There are sneaky shortcuts

The Al tried to learn from garbage data

Big Ideas

Al Weaknesses
Remembering things
Planning ahead

Data- and computation-intensive

Example Tasks

'(/\Bbf“x’v) Yo W
/

Self-driving cars
5 now doos (€ Kpav Wef - astes ﬂooc@?

Résumé screening - QQ%‘"N beos frem frammy clote
' - "\U/y\/\m/dg._ CAS bt ot \)%&(v\

Cockroach farming)

Tic-tac-toe — Sfurkey shorfesi

Image recognition — sjusky ntods « bed dabe

Joke generation \gar vV Jred cofie(efian

Super Mario

Recipe generation -

Writing news articles

Recap

Rational agents

¢

Given a goal, an Al agent must decide what the best action to
take 1s 1n order to reach this goal.

For complex tasks, this can mean:
gathering information
coming up a set of possible actions
welghing the best action
acting

updating and adapting based on changes to the
environment

Agent Complexity

Problem-solving agent: capable of considering a
sequence of actions that form a path to a goal state
(planning ahead).

S _ A _ o _

_~

s T) / A | '.: if I wail, the human
| / : o & i might refill my bowl.
el) then I can eat more.

Y af
’ 4
.

2

g‘

Search

Example search problem: Holiday in Romania

] Oradea

Fagaras

You are 118
here
Timisoara
111 1 Lugoj
70
] Mehadia
75
Drobeta [] 120

80

Rimnicu Vilcea

n
Craiova

138

Pitesti
O

Neamt
[|
87
L Tasi
92
Ld Vaslui
211 142
u %8 L] Hirsova
85 L.
101 Urziceni
- 86
Bucharest
90 -
] Giurgiu Eforie
You need
to be here

Slides adapted from Chris Callison-Burch

Holiday in Romania

On holiday in Romania; currently in Arad
* Flight leaves tomorrow from Bucharest

Formulate @)@\ Stete =« Bochaves 1
% WA BQCM@/WS"

Formulate
Qrddes @S
depions: — dyivine lefweesr /€S
Cost - diskace (MH/\/&«/\ C}Hﬂx)
Find
Seqpente sk cireg

Slides adapted from Chris Callison-Burch

Example search problem: 8-puzzie

Formulate T2 12
Skove W= 1S e 5 5 3| 4| 5
N\ of dad (=% Yy
on qu\}v 8 |[| 3 ||| 6|/ 7] 8
Formulate GonlState

S weys fe afrenge Hles (g1
Aos . v 2 Ple u\/pd A, [rignl
Cost £ of /NNeS

Find

Seavau ofF ‘/iua Wi 2d \;)/J(m clvefen WVML

Slides adapted from Chris Callison-Burch

Search Algorithms

Basic search algorithms: 7ree Search

Generalized algorithm to solve search problems
Enumerate in some order all possible paths from the initial state

Sepin fmiwg - eplick dfe Gpronater)
Rook - nibel St

Nocles: Stetes (opref sted g In T usitien
W\u&g/[)

Tew searn freats o ifleset WW‘
fo A SO skek (V) v -

Generalized tree search

i slige FrCVH’;@k/ fo e Fert Slae.
do

W e fenper 8 C’J/VVH hen1 Votorm fo}/ul/(
choose {1 vus pode fo O cofding 1o fovtery

£ Nede gy cpal, yeum solti

615{ e:[)wf/\ (W\Q \/16904&
{0 oxdn cld:
B ohild s i b D

Slides adapted from Chris Callison-Burch

ved, ot 1o ftentie

Generalized tree search

function TREE-SEARCH(problem, strategy) return a solution or failure The strategy determines
Initialize frontier to the initial state of the problem search proceSS!
do

if the frontier is empty then return failure
choose leaf node for expansion according to(strategy)& remove from frontier
if node contains goal state then return solution

else expand the node and add resulting nodes to the frontier

Slides adapted from Chris Callison-Burch

 Onderon i

e 1 " Palis Massa: ;0
Coruscant - o ia

e BT W Ty

o Iridonia -

- Alderaan g

- S

L [Vahdor-1

Tﬁatooine,
e o gl I

i3 70
Mandalore
751

i - fKessel -
Dagobah .

Geonosis -

Slides adapted from Chris Callison-Burch

Search Tree Root node =
start state

Expanded nodes

Tatooine

Alderaan Onderon Endor Ryloth

Frontier Choose leaf node from frontier for expansion
according to to the search strategy

Determines the
search process

Slides adapted from Chris Callison-Burch

States Versus Nodes

Sfete : (erosimtetio of o fhysicel cofiguedtioy

of ¢ eywxonment”

Noce: @ ddbe shodtont Wi gouadl Hields:
< skete, W}-maﬂe, childven AchioN | Cgsh&ﬁw>

DA e CQL/V'\"' \/\@’\/\(CDS*SJ PWSJ

of - dgims,

8-Puzzle Search Tree

(Nodes show state, parent, Z 2 :
children - leaving Action, Cost,

" 8 (3|1
Depth Implicit) =

Slides adapted from Chris Callison-Burch

Problem: Repeated states

Failure to detect repeated states can turn a linear problem into an exponential one!

Slides adapted from Chris Callison-Burch

Solution: Graph Search!
B o\
SC\A//Q BQ/ \OC
RTAVNEYAN

State Space
Search Tree

Graph search

 Simple Mod from tree search: Check to see if a node has been visited
before adding to search queue
« must keep track of all possible states (can use a lot of memory)
 e.g. 8-puzzle problem, we have 9!/2 =182K states

Slides adapted from Chris Callison-Burch

Graph Search vs Tree Search

function TREE-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state of problem
loop do
if the frontier is empty then return failure
choose a leaf nose and remove it from the frontier
if the node contains a goal state then return the corresponding solution
expand the chosen node, adding the resulting nodes to the frontier

function GRAPH-SEARCH(problem) returns a solution, or failure

initialize the frontier using the initial state of problem

initialize the explored set to be empty

loop do
if the frontier is empty then return failure
choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution
add node to the explored set
expand the chosen node, adding the resulting nodes to the frontier

only if not in the frontier of explored set

Slides adapted from Chris Callison-Burch

Uninformed Search

Uninformed Search

Uses only information available in problem definition

Informally:
Uninformed search: All non-goal nodes in frontier look equally good
Informed search: Some non-goal nodes can be ranked above others.

Slides adapted from Chris Callison-Burch

Breadth-First Search

Breadth-first search

|dea:
* Expand. vest unexpanded node

Implementation:

ris FIFO (First-In-First-Out) Queue:
e Put successors at the end of frontier successor list.

Slides adapted from Chris Callison-Burch

Breadth-first search

function BREADTH-FIRST-SEARCH(problem) returns a solution node or failure
node <~ NODE(problem.INITIAL)
if problem.1S-GOAL(node.STATE) then return node
frontier <—a FIFO queue, with node as an element
reached + {pmblem. IN lTlAL} Position within
while not IS-EMPTY(frontier) do queue of new items
node — PoP(frontier) determines searcf
for each child in EXPAND(problem, node) do
s <—child. STATE
if problem.1S-GOAL(s) then return child
if 5 1S not in reached then
add s to reached
add child to frontier
return failure

Slides adapted from Chris Callison-Burch

Breadth-first search

function EXPAND(problem, node) yields nodes
§4—node.STATE
for each action in problem.ACTIONS(s) do
s' < problem . RESULT(s, action)
cost <+ node.PATH-COST + problem.ACTION-COST(s, action, s')
yield NODE(STATE=s", PARENT=node, ACTION=action, PATH-COST=cost)

Node data structure contains variables like the
state, a pointer to its parent node, the action that
was used to create this state, and the path cost.

The Python yield keyword means
that we don’t have to pre-compute
a list of all successors.

Slides adapted from Chris Callison-Burch

Breadth-first search

function BREADTH-FIRST-SEARCH(problem) returns a solution node or failure
node <~ NODE(problem.INITIAL)
if problem.1S-GOAL(node.STATE) then return node
frontier < a FIFO queue, with node as an element
reached < {problem.INITIAL }
while not IS-EMPTY (frontier) do
node <+ POP(frontier)
for each child in EXPAND(problem, node) do
s < child. STATE
if problem.1S-GOAL(s) then return child
if 5 1s not in reached then
add s to reached
add child to frontier Subtle: Node inserted into
return failure

queue only after testing to
see if it is a goal state

Slides adapted from Chris Callison-Burch

(53 (63) @ current X
D © (19 ©) 9 © O discovered y
P & & 2 &) ® O node done
@D O O = O O O—) @ O ,
() 63} ® ®) ® © O © Undiscovered edge
(3) ®, (33) D D (o)) (0 \ Discovered edge
Q—@® /| @ _GF— (—9 @ ® ©
»O O 9 /&—© @ D @O—0B \O O &
@ 9@ | @ BH— D & ® ®©
G\ [g— \E O—®» W\ OO ® ® ®
() 1) ® D), D, (37 121 (150 ® i)
(21) D (48) D (81) ® ® mfil-([f ;1 ?i};e(ilueuc called g
© ® @ ® ® © ®© ® ma‘l 4t
push x onto q
O (D 1—@ @
(19) 9) (57) (8) (122) * 140 > ¢ while q not empty:
& @ © O ® ® ?(?rpegcl;:t; :1 X connections
©) 99 O ® (4] ® if y not visited:
B0 © O ® © [marky visited|
D @ ® © ® push y onto q
® T© @ ©

https://www.youtube.com/watch?v=x-VTfcmrLEQ

Properties of breadth-first search

b= 6%4/!01/11\/&3
Complete? ey (ifF § 75 Wi\‘Q} facter”
Optimal? Moy (b o _ 1 s sep de - dagin
Time Complexity? 1+ b« besb®.. . = O(bd>

Space Complexity? (6&>

Slides adapted from Chris Callison-Burch

Exponential Space (and time) Is Not Good...

« Exponential complexity uninformed search problems
but the smallest instances.

annot be solved for any

/ requirements are a bigger problem than ¢ time.)
DEPTH NODES TIME MEMORY
2 110 0.11 milliseconds 107 kilobytes
4 11110 11 milliseconds 10.6 megabytes
6 10° 1.1 seconds 1 gigabytes
8 108 2 minutes 103 gigabytes
10 1070 3 hours 10 terabytes
12 1072 13 days 1 petabytes
14 104 3.5 years 99 petabytles

Assumes b=10, 1M nodes/sec, 1000 bytes/node

Slides adapted from Chris Callison-Burch

